Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897957

RESUMEN

The valorization of biomass residuals constitutes a key aspect of circular economy and thus a major challenge for the scientific community. Among industrial wastes, plant residuals could represent an attractive source of bioactive compounds. In this context, a residue from the industrial extraction of Cucurbita pepo L. seeds, whose oil is commercialized for the treatment of genito-urinary tract pathologies, has been selected. Supercritical CO2 technology has been employed as a highly selective "green" methodology allowing the recovery of compounds without chemical degradation and limited operational costs. Free fatty acids have been collected in mild conditions while an enrichment in sterols has been selectively obtained from sc-CO2 extracts by appropriate modulation of process parameters (supercritical fluid pressure and temperature), hence demonstrating the feasibility of the technique to target added-value compounds in a selective way. Obtained fatty acids were thus converted into the corresponding ethanol carboxamide derivatives by lipase-mediated biocatalyzed reactions, while the hydroxylated derivatives of unsaturated fatty acids were obtained by stereoselective hydration reaction under reductive conditions in the presence of a selected FADH2-dependent oleate hydratase.


Asunto(s)
Cromatografía con Fluido Supercrítico , Cucurbita , Dióxido de Carbono/química , Cromatografía con Fluido Supercrítico/métodos , Aceites de Plantas/química , Semillas/química
2.
Biotechnol Lett ; 43(12): 2259-2272, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34665367

RESUMEN

OBJECTIVES: This study focuses on dehalogenation of halogenated organic substrate (3-Chloropropiophenone) using both free and hydrogel entrapped microalgae Chlorella emersonii (211.8b) as biocatalyst. We aimed at successful immobilization of C. emersonii (211.8b) cells and to assess their biotransformation efficiency. RESULTS: Aquasorb (entrapping material in this study) was found to be highly biocompatible with the cellular growth and viability of C. emersonii. A promising number of entrapped cells was achieved in terms of colony-forming units (CFUs = 2.1 × 104) per hydrogel bead with a comparable growth pattern to that of free cells. It was determined that there is no activity of hydrogenase that could transform 1-phenyl-2-propenone into 1-phenyl-1-propanone because after 12 h the ratio between two products (0.36 ± 0.02) remained constant throughout. Furthermore, it was found that the entrapped cells have higher biotransformation of 3-chloropropiophenone to 1-phenyl-1-propanone as compared to free cells at every interval of time. 1-phenyl-2-propenone was excluded from the whole-cell biotransformation as it was also found in the control group (due to spontaneous generation). CONCLUSION: Hence, enhanced synthesis of 1-phenyl-1-propanone by entrapped Chlorella (211.8b) can be ascribed to either an enzymatic activity (dehalogenase) or thanks to the antioxidants from 211-8b, especially when they are in immobilized form. The aquasorb based immobilization of microalgae is highly recommended as an effective tool for exploiting microalgal potentials of biocatalysis specifically when free cells activities are seized due to stress.


Asunto(s)
Biotransformación/efectos de los fármacos , Chlorella/química , Hidrogeles/farmacología , Biocatálisis/efectos de los fármacos , Chlorella/metabolismo , Hidrogeles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA