Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473961

RESUMEN

Obesity, a complex disorder with rising global prevalence, is a chronic, inflammatory, and multifactorial disease and it is characterized by excessive adipose tissue accumulation and associated comorbidities. Adipose tissue (AT) is an extremely diverse organ. The composition, structure, and functionality of AT are significantly influenced by characteristics specific to everyone, in addition to the variability connected to various tissue types and its location-related heterogeneity. Recent investigation has shed light on the intricate relationship between bone marrow stem cells and obesity, revealing potential mechanisms that contribute to the development and consequences of this condition. Mesenchymal stem cells within the bone marrow, known for their multipotent differentiation capabilities, play a pivotal role in adipogenesis, the process of fat cell formation. In the context of obesity, alterations in the bone marrow microenvironment may influence the differentiation of mesenchymal stem cells towards adipocytes, impacting overall fat storage and metabolic balance. Moreover, bone marrow's role as a crucial component of the immune system adds another layer of complexity to the obesity-bone marrow interplay. This narrative review summarizes the current research findings on the connection between bone marrow stem cells and obesity, highlighting the multifaceted roles of bone marrow in adipogenesis and inflammation.


Asunto(s)
Adipocitos , Tejido Adiposo , Humanos , Tejido Adiposo/metabolismo , Diferenciación Celular , Adipocitos/metabolismo , Adipogénesis , Obesidad/metabolismo , Inflamación/metabolismo , Células de la Médula Ósea
3.
J Funct Morphol Kinesiol ; 9(3)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39311255

RESUMEN

The objective of this study was to examine the effect of a training program utilizing action perception technology (PAD) tools on improving the motor reaction times and neuromuscular capabilities of the upper and lower limbs compared to a traditional training program. Twenty-four female volleyball players competing in the Italian national championship were randomized into two groups of 12 athletes each: an experimental group (EG) and a control group (CG). A preliminary analysis confirmed the absence of significant differences in age and anthropometric characteristics between the groups. All the players underwent an initial battery of tests (pre-test), including Reaction Time simple Upper and Lower Limb (RTsUL and RTsLL) and Tapping Upper and Lower Limb (TUL and TLL). During a 6-week training program, the experimental group used exercises with a technological system of illuminated disks, while the control group followed the traditional training methods without advanced technology. At the end of the program, both groups were subjected to final tests (post-test). The main results show that after 6 weeks, both groups improved their performance compared to the initial tests. However, EG achieved significantly better results than CG in every test, with significant reductions in average times (ip%) of -14.9% in RTsUL (DX = -0.072 s, t = 23.2, p < 0.05, d = 6.7), -14.9% in RTsLL (DX = -0.091 s, t = 44.0, p < 0.05, d = 12.7), -10.6% in TUL (DX = -0.622 s, t = 42.0, p < 0.05, d = 12.1), and -10.7% in TLL (DX = -0.983 s, t = 43.1, p < 0.05, d = 12.4). The use of light-based perception-action technology devices in volleyball training has shown potential for significantly improving movement speed and reaction time. However, further research is needed to determine whether these improvements actually translate into enhanced overall performance in competitive contexts compared to the traditional training methods.

4.
Foods ; 13(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39200554

RESUMEN

The prevalence of obesity has become a global health concern, with significant impacts on quality of life and mortality rates. Recent research has highlighted the role of ultra-processed foods (UPFs) in driving the obesity epidemic. UPFs undergo extensive processing, often containing high levels of sugars, fats, and additives, while lacking essential nutrients. Studies have linked UPF consumption to obesity and cardiometabolic diseases, underscoring the importance of dietary patterns rich in whole foods. Thus, the aim of this narrative review is to elucidate the correlation between ultra-processed foods and the increased trend of obesity and its related complications. These foods, prevalent in modern diets, contribute to nutritional deficiencies and excessive caloric intake, exacerbating obesity rates. Lifestyle factors such as busy schedules and quick meal management further drive UPF consumption, disrupting hunger regulation and promoting overeating. UPF consumption correlates with adverse health outcomes, including dyslipidemia, hypertension, and insulin resistance. Promoting whole, minimally processed foods and implementing school-based nutrition education programs are crucial steps. Also, numerous challenges exist, including unequal access to healthy foods, the industry's influence, and behavioral barriers to dietary change. Future research should explore innovative approaches, such as nutrigenomics and digital health technologies, to personalize interventions and evaluate policy effectiveness. Collaboration across disciplines and sectors will be vital to develop comprehensive solutions and improve public health outcomes globally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA