RESUMEN
PURPOSE OF REVIEW: Nonalcoholic fatty liver disease (NAFLD) is strongly associated with obesity, but is also common in individuals with a normal body mass index (BMI), who also experience the hepatic inflammation, fibrosis, and decompensated cirrhosis associated with NAFLD progression. The clinical evaluation and treatment of NAFLD in this patient population are challenging for the gastroenterologist. A better understanding of the epidemiology, natural history, and outcomes of NAFLD in individuals with normal BMI is emerging. This review examines the relationship between metabolic dysfunction and clinical characteristics associated with NAFLD in normal-weight individuals. RECENT FINDINGS: Despite a more favorable metabolic profile, normal-weight NAFLD patients exhibit metabolic dysfunction. Visceral adiposity may be a critical risk factor for NAFLD in normal-weight individuals, and waist circumference may be better than BMI for assessing metabolic risk in these patients. Although screening for NAFLD is not presently recommended, recent guidelines may assist clinicians in the diagnosis, staging, and management of NAFLD in individuals with a normal BMI. SUMMARY: Individuals with a normal BMI likely develop NAFLD as a result of different etiologies. Subclinical metabolic dysfunction may be a key component of NAFLD in these patients, and efforts to better understand this relationship in this patient population are needed.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Índice de Masa Corporal , Factores de Riesgo , Obesidad/complicaciones , Obesidad/epidemiología , Cirrosis Hepática/etiología , Cirrosis Hepática/complicacionesRESUMEN
Choline deficiency causes hepatic fat accumulation, and is associated with a higher risk of nonalcoholic fatty liver disease (NAFLD) and more advanced NAFLD-related hepatic fibrosis. Reduced expression of hepatic phosphatidylethanolamine N-methyltransferase (PEMT), which catalyzes the production of phosphatidylcholine, causes steatosis, inflammation, and fibrosis in mice. In humans, common PEMT variants impair phosphatidylcholine synthesis, and are associated with NAFLD risk. We investigated hepatic PEMT expression in a large cohort of patients representing the spectrum of NAFLD, and examined the relationship between PEMT genetic variants and gene expression. Hepatic PEMT expression was reduced in NAFLD patients with inflammation and fibrosis (i.e., nonalcoholic steatohepatitis or NASH) compared to participants with normal liver histology (ß = −1.497; p = 0.005). PEMT levels also declined with increasing severity of fibrosis with cirrhosis < incomplete cirrhosis < bridging fibrosis (ß = −1.185; p = 0.011). Hepatic PEMT expression was reduced in postmenopausal women with NASH compared to those with normal liver histology (ß = −3.698; p = 0.030). We detected a suggestive association between rs7946 and hepatic fibrosis (p = 0.083). Although none of the tested variants were associated with hepatic PEMT expression, computational fine mapping analysis indicated that rs4646385 may impact PEMT levels in the liver. Hepatic PEMT expression decreases with increasing severity of NAFLD in obese individuals and postmenopausal women, and may contribute to disease pathogenesis in a subset of NASH patients.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Fosfatidiletanolamina N-Metiltransferasa , Femenino , Fibrosis , Humanos , Inflamación/patología , Hígado/enzimología , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolamina N-Metiltransferasa/metabolismoRESUMEN
BACKGROUND & AIMS: A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. METHODS: We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. RESULTS: Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], pz = 4.8×10-5) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], pz = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], pz = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (pz = 0.002) and lower serum triglycerides (pz = 1.5×10-4). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. CONCLUSIONS: Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. LAY SUMMARY: Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.
Asunto(s)
Aciltransferasas/genética , Cirrosis Hepática , Hígado/patología , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico , Alanina Transaminasa/sangre , Descubrimiento de Drogas , Predisposición Genética a la Enfermedad , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Polimorfismo de Nucleótido SimpleRESUMEN
Preclinical investigations in animal models have consistently demonstrated neurobiological changes and life-long cognitive deficits following exposure to widely used anesthetics early in life. However, the mechanisms by which these exposures affect brain function remain poorly understood, therefore, limiting the efficacy of current diagnostic and therapeutic options in human studies. The human brain exhibits an abundant expression of long noncoding RNAs (lncRNAs). These biologically active transcripts play critical roles in a diverse array of functions, including epigenetic regulation. Changes in lncRNA expression have been linked with brain development, normal CNS processes, brain injuries, and the development of neurodegenerative diseases, and many lncRNAs are known to have brain-specific expression. Aberrant lncRNA expression has also been implicated in areas of growing importance in anesthesia-related research, including anesthetic-induced developmental neurotoxicity (AIDN), a condition defined by neurological changes occurring in patients repeatedly exposed to anesthesia, and the related condition of perioperative neurocognitive disorder (PND). In this review, we detail recent advances in PND and AIDN research and summarize the evidence supporting roles for lncRNAs in the brain under both normal and pathologic conditions. We also discuss lncRNAs that have been linked with PND and AIDN, and conclude with a discussion of the clinical potential for lncRNAs to serve as diagnostic and therapeutic targets for the prevention of these neurocognitive disorders and the challenges facing the identification and characterization of associated lncRNAs.
Asunto(s)
Anestésicos/efectos adversos , Trastornos Neurocognitivos/inducido químicamente , Trastornos Neurocognitivos/genética , Atención Perioperativa/métodos , ARN Largo no Codificante/fisiología , Anestésicos/administración & dosificación , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Humanos , Trastornos Neurocognitivos/diagnósticoRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is a chronic, frequently progressive condition that develops in response to excessive hepatocyte fat accumulation (i.e., steatosis) in the absence of significant alcohol consumption. Liver steatosis develops as a result of imbalanced lipid metabolism, driven largely by increased rates of de novo lipogenesis and hepatic fatty acid uptake and reduced fatty acid oxidation and/or disposal to the circulation. Fructose is a naturally occurring simple sugar, which is most commonly consumed in modern diets in the form of sucrose, a disaccharide comprised of one molecule of fructose covalently bonded with one molecule of glucose. A number of observational and experimental studies have demonstrated detrimental effects of dietary fructose consumption not only on diverse metabolic outcomes such as insulin resistance and obesity, but also on hepatic steatosis and NAFLD-related fibrosis. Despite the compelling evidence that excessive fructose consumption is associated with the presence of NAFLD and may even promote the development and progression of NAFLD to more clinically severe phenotypes, the molecular mechanisms by which fructose elicits effects on dysregulated liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. The aim of this review is to summarize the current research supporting a role for dietary fructose intake in the modulation of transcriptomic and epigenetic mechanisms underlying the pathogenesis of NAFLD.
Asunto(s)
Azúcares de la Dieta/metabolismo , Epigénesis Genética , Fructosa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Metilación de ADN , Azúcares de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Fructosa/efectos adversos , Humanos , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , TranscriptomaRESUMEN
BACKGROUND/AIMS: Excessive consumption of dietary fat and sugar is associated with an elevated risk of nonalcoholic fatty liver disease (NAFLD). Hepatocytes exposed to saturated fat or sugar exert effects on nearby hepatic stellate cells (HSCs); however, the mechanisms by which this occurs are poorly understood. We sought to determine whether paracrine effects of hepatocytes exposed to palmitate and fructose produced profibrotic transcriptional responses in HSCs. METHODS: We performed expression profiling of mRNA and lncRNA from HSCs treated with conditioned media (CM) from human hepatocytes treated with palmitate (P), fructose (F), or both (PF). RESULTS: In HSCs exposed to CM from palmitate-treated hepatocytes, we identified 374 mRNAs and 607 lncRNAs showing significant differential expression (log2 foldchange ≥ |1|; FDR ≤0.05) compared to control cells. In HSCs exposed to CM from PF-treated hepatocytes, the number of differentially expressed genes was much higher (1198 mRNAs and 3348 lncRNAs); however, CM from fructose-treated hepatocytes elicited no significant changes in gene expression. Pathway analysis of differentially expressed genes showed enrichment for hepatic fibrosis and hepatic stellate cell activation in P- (FDR =1.30E-04) and PF-(FDR =9.24E-06)groups. We observed 71 lncRNA/nearby mRNA pairs showing differential expression under PF conditions. There were 90 mRNAs and 264 lncRNAs strongly correlated between the PF group and differentially expressed transcripts from a comparison of activated and quiescent HSCs, suggesting that some of the transcriptomic changes occurring in response to PF overlap with HSC activation. CONCLUSION: The results reported here have implications for dietary modifications in the prevention and treatment of NAFLD.
Asunto(s)
Medios de Cultivo Condicionados/farmacología , Fibrosis/genética , Fructosa/farmacología , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Palmitatos/farmacología , Transcriptoma/efectos de los fármacos , Biología Computacional , Fibrosis/metabolismo , Fibrosis/patología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Edulcorantes/farmacologíaRESUMEN
Bac Coronary artery disease (CAD) is the leading cause of death worldwide and most commonly develops as a result of atherosclerosis. ANGPTL8 is a secreted adipokine that regulates lipid metabolism and is associated with cardiometabolic diseases, including type 2 diabetes and CAD. However, the association between circulating ANGPTL8 levels and CAD is inconsistent among studies and the mechanism by which ANGPTL8 contributes to CAD development remains poorly understood. Here we sought to evaluate the relationship between ANGPTL8 levels and endothelial dysfunction and adipose tissue inflammation in CAD patients. Concentrations of ANGPTL8, adiponectin, TNF-α, IL6, hsCRP, ICAM-1, and VCAM-1 were measured by ELISA in serum samples from 192 CAD patients diagnosed with stenosis > 50% in at least one coronary artery by angiography and 71 individuals with normal heart function. Serum ANGPTL8 levels were significantly higher in CAD patients compared to controls (83.84 ± 23.25 ng/mL vs. 50.45 ± 17.73; p < 0.001), independent of adjustment for age, sex, BMI, smoking and statin use. ANGPTL8 could also differentiate CAD patients from controls with 82.3% specificity and 81.4% sensitivity (p < 0.001). Adiponectin levels were lower in CAD patients, while ICAM-1, VCAM-1, TNF-α, IL6, and hsCRP levels were higher compared to non-CAD controls (all p < 0.001). ANGPTL8 levels were associated with BMI in controls and with BMI, TG, and ICAM-1 in CAD patients. The presence of elevated ANGPTL8 levels in CAD patients and independent association with TG and ICAM-1 suggest a possible role related to endothelial dysfunction in the pathogenesis of atherosclerosis.
Asunto(s)
Tejido Adiposo/metabolismo , Proteínas Similares a la Angiopoyetina/sangre , Enfermedad de la Arteria Coronaria/sangre , Hormonas Peptídicas/sangre , Adiponectina/sangre , Tejido Adiposo/fisiopatología , Anciano , Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/genética , Índice de Masa Corporal , Proteína C-Reactiva/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/fisiopatología , Femenino , Humanos , Molécula 1 de Adhesión Intercelular/sangre , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Pacientes , Hormonas Peptídicas/genética , Triglicéridos/sangre , Factor de Necrosis Tumoral alfa/sangre , Molécula 1 de Adhesión Celular Vascular/sangre , Enfermedades Vasculares/metabolismoRESUMEN
CCL20 (CC chemokine ligand 20) is emerging as an important regulatory molecule in a pathway common to virus infection, alcoholic hepatitis, and non-alcoholic fatty liver disease (NAFLD) leading to the development of hepatic fibrosis. We previously observed upregulation of CCL20 in patients with NAFLD fibrosis and human hepatic stellate cells (LX-2 cells) in response to lipid loading. To date, the mechanisms mediating the relationship between CCL20 and hepatic fibrogenesis remain unknown. In this study, we sought to characterize the molecular mechanisms by which CCL20 may contribute to fibrogenesis in NAFLD. We observed that CCL20 levels increased with worsening severity of liver histology in NAFLD patients (normalâ¯<â¯steatosisâ¯<â¯inflammationâ¯<â¯fibrosis) and during LX-2 cell activation in a time-dependent manner. We found that treatment of LX-2 cells with CCL20 corresponded with increased levels of CCL20 and ACTA2, and decreased levels of PLAU and SERPINE1, effects mitigated by CCL20 knockdown. We identified a putative binding site for miR-590-5p, which we previously reported to be downregulated in NAFLD fibrosis, in the CCL20 3' untranslated region (3'UTR), and found that exogenous miR-590-5p functionally interacted with the CCL20 3'UTR to downregulate its expression. Transfection of LX-2 hepatic stellate cells with miR-590-5p mimic or silencing RNA resulted in decreased or increased CCL20 levels, respectively. Our results indicate an association between CCL20 and hepatic stellate cell activation that includes modulation of key ECM components and functional interactions with a miRNA previously implicated in NAFLD fibrosis. Together, these findings support a novel mechanism by which CCL20 may promote fibrogenesis in NAFLD.
Asunto(s)
Quimiocina CCL20/biosíntesis , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regiones no Traducidas 3' , Células HEK293 , Células Estrelladas Hepáticas/patología , Humanos , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patologíaRESUMEN
BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a prevalent complication of extreme obesity. Loading of the liver with fat can progress to inflammation and fibrosis including cirrhosis. The molecular factors involved in the progression from simple steatosis to fibrosis remain poorly understood. METHODS: Gene expression profiling using microarray, PCR array, and RNA sequencing was performed on RNA from liver biopsy tissue from patients with extreme obesity. Patients were grouped based on histological findings including normal liver histology with no steatosis, lobular inflammation, or fibrosis, and grades 1, 2, 3, and 4 fibrosis with coexistent steatosis and lobular inflammation. Validation of expression was conducted using quantitative PCR. Serum analysis was performed using ELISA. Expression analysis of hepatocytes and hepatic stellate cells in response to lipid loading were conducted in vitro using quantitative PCR and ELISA. RESULTS: Three orthogonal methods to profile human liver biopsy RNA each identified the chemokine CCL20 (CC chemokine ligand 20 or MIP-3 alpha) gene as one of the most up-regulated transcripts in NAFLD fibrosis relative to normal histology, validated in a replication group. CCL20 protein levels in serum measured in 224 NAFLD patients were increased in severe fibrosis (p < 0.001), with moderate correlation of hepatic transcript levels and serum levels. Expression of CCL20, but not its cognate receptor CC chemokine receptor 6, was significantly (p < 0.001) increased in response to fatty acid loading in LX-2 hepatic stellate cells, with relative increases greater than those in HepG2 hepatocyte cells. CONCLUSIONS: These results suggest that expression of CCL20, an important inflammatory mediator, is increased in NAFLD fibrosis. CCL20 serves as a chemoattractant molecule for immature dendritic cells, which have been shown to produce many of the inflammatory molecules that mediate liver fibrosis. These data also point to hepatic stellate cells as a key cell type that may respond to lipid loading of the liver.
Asunto(s)
Quimiocina CCL20/genética , Ácidos Grasos/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Regulación hacia Arriba , Quimiocina CCL20/metabolismo , Células Hep G2 , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
We previously identified a locus linked to total cholesterol (TC) concentration in Pima Indians on chromosome 19p. To characterize this locus, we genotyped >2000 SNPs in 1838 Pimas and assessed association with log(TC). We observed evidence for association with log(TC) with rs2278426 (3.5% decrease/copy of the T allele; P=5.045×10(-6)) in the ANGPTL8 (angiopoietin-like 8) gene. We replicated this association in 2413 participants of the San Antonio Mexican American Family Study (SAMAFS: 2.0% decrease per copy of the T allele; P=0.005842). In a meta-analysis of the combined data, we found the strongest estimated effect with rs2278426 (P=2.563×10(-7)). The variant T allele at rs2278426 predicts an Arg59Trp substitution and has previously been associated with LDL-C and HDL-C. In Pimas and SAMAFS participants, the T allele of rs2278426 was associated with reduced HDL-C levels (P=0.000741 and 0.00002, respectively), and the combined estimated effect for the two cohorts was -3.8% (P=8.526×10(-8)). ANGPTL8 transcript and protein levels increased in response to both glucose and insulin. The variant allele was associated with increased levels of cleaved ANGPTL3. We conclude that individuals with the variant allele may have lower TC and HDL-C levels due to increased activation of ANGPTL3 by ANGPTL8.
Asunto(s)
Proteínas Similares a la Angiopoyetina/genética , Proteínas Similares a la Angiopoyetina/metabolismo , HDL-Colesterol/genética , Indígenas Norteamericanos/genética , Americanos Mexicanos/genética , Hormonas Peptídicas/genética , Adulto , Alelos , Sustitución de Aminoácidos , Proteína 3 Similar a la Angiopoyetina , Proteína 8 Similar a la Angiopoyetina , Arginina/genética , Glucemia/metabolismo , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , LDL-Colesterol/sangre , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Cromosomas Humanos Par 19/genética , Estudios de Cohortes , Enfermedad Coronaria/sangre , Enfermedad Coronaria/genética , Diabetes Mellitus/genética , Femenino , Estudio de Asociación del Genoma Completo , Células Hep G2 , Humanos , Insulina/metabolismo , Masculino , Persona de Mediana Edad , Hormonas Peptídicas/metabolismo , Polimorfismo de Nucleótido Simple , Triptófano/genéticaRESUMEN
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.
Asunto(s)
Carcinoma Hepatocelular , Hígado Graso , Neoplasias Hepáticas , Humanos , Estudio de Asociación del Genoma Completo , Transcriptoma/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Integrina beta1RESUMEN
BACKGROUND: Recent studies suggest that proteomic cargo of extracellular vesicles (EVs) may play a role in metabolic improvements following lifestyle interventions. However, the relationship between changes in liver fat and circulating EV-derived protein cargo following intervention remains unexplored. METHODS: The study cohort comprised 18 Latino adolescents with obesity and hepatic steatosis (12 males/6 females; average age 13.3 ± 1.2 y) who underwent a six-month lifestyle intervention. EV size distribution and concentration were determined by light scattering intensity; EV protein composition was characterized by liquid chromatography tandem-mass spectrometry. RESULTS: Average hepatic fat fraction (HFF) decreased 23% by the end of the intervention (12.5% [5.5] to 9.6% [4.9]; P = 0.0077). Mean EV size was smaller post-intervention compared to baseline (120.2 ± 16.4 nm to 128.4 ± 16.5 nm; P = 0.031), although the difference in mean EV concentration (1.1E+09 ± 4.1E+08 particles/mL to 1.1E+09 ± 1.8E+08 particles/mL; P = 0.656)) remained unchanged. A total of 462 proteins were identified by proteomic analysis of plasma-derived EVs from participants pre- and post-intervention, with 113 proteins showing differential abundance (56 higher and 57 lower) between the two timepoints (adj-p <0.05). Pathway analysis revealed enrichment in complement cascade, initial triggering of complement, creation of C4 and C2 activators, and regulation of complement cascade. Hepatocyte-specific EV affinity purification identified 40 proteins with suggestive (p < 0.05) differential abundance between pre- and post-intervention samples. CONCLUSIONS: Circulating EV-derived proteins, particularly those associated with the complement cascade, may contribute to improvements in liver fat in response to lifestyle intervention.
Asunto(s)
Vesículas Extracelulares , Proteómica , Masculino , Femenino , Humanos , Adolescente , Niño , Proteómica/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Cromatografía Liquida , Proteínas/metabolismo , Espectrometría de MasasRESUMEN
Although the causes of diabetic nephropathy are not yet fully known, emerging evidence suggests a role for epigenetic factors in the development of the disease. In particular, microRNAs (miRNAs) are becoming recognized as important mediators of biological processes relevant to diabetic nephropathy. Until recently, investigations of miRNAs in the development of diabetic nephropathy have remained relatively limited; however, the number of reports identifying potential new candidates and mechanisms of impact is presently expanding at a rapid pace. This review seeks to summarize these recent findings, focusing on new candidates and/or novel mechanisms, including the intersection between genetic variation and miRNA function in modulating disease expression, emerging in the field. We also review the latest advances in the diagnostic and therapeutic potential of miRNAs in the treatment of diabetic nephropathy.
Asunto(s)
Nefropatías Diabéticas/genética , Nefropatías Diabéticas/terapia , MicroARNs/metabolismo , Animales , Biomarcadores/metabolismo , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Variación Genética , Humanos , MicroARNs/genéticaRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.
Asunto(s)
Isoflavonas , Enfermedad del Hígado Graso no Alcohólico , Probióticos , Humanos , Femenino , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Posmenopausia , Colina/uso terapéutico , Probióticos/uso terapéutico , Isoflavonas/uso terapéuticoRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in children. Like adults, children can develop the progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), which is characterized by hepatic inflammation, often in the presence of fibrosis. Children with NAFLD are at higher risk of liver-related complications, metabolic dysfunction, and cardiovascular disease in adulthood. Many factors contribute to the escalating prevalence of NAFLD in the pediatric population, among which are an array of dietary patterns such as overnutrition, poor diet quality, and heavy consumption of fat and sugar, including fructose. Findings from an increasing number of epidemiological studies support a connection between high habitual sugar consumption and NAFLD, especially within the context of obesity, but these studies are not able to demonstrate whether sugar is a contributing factor or instead an indicator of an overall poor diet (or lifestyle) quality. To date, only four randomized controlled dietary interventions assessing the effects of sucrose/fructose restriction on hepatic fat fraction in youth with obesity have been published. The objectives of this review are to summarize the key findings from these dietary interventions to achieve a better understanding of the strength of the relationship between dietary sugar restriction and liver fat reduction, despite their inherent limitations, and to discuss the potential impact of weight loss and fat mass reduction on improvement in hepatic steatosis.
RESUMEN
We are delighted to share with you our thirteenth Journal Club and highlight some of the most interesting papers published recently [...].
RESUMEN
We are delighted to share with you our twelfth Journal Club and highlight some of the most interesting papers published recently [...].
RESUMEN
Urinary exosomes are 40-100 nm vesicles containing protein, mRNA, and microRNA that may serve as biomarkers of renal dysfunction and structural injury. Currently, there is a need for more sensitive and specific biomarkers of renal injury and disease progression. Here we sought to identify the best exosome isolation methods for both proteomic analysis and RNA profiling as a first step for biomarker discovery. We used six different protocols; three were based on ultracentrifugation, one used a nanomembrane concentrator-based approach, and two utilized a commercial exosome precipitation reagent. The highest yield of exosomes was obtained using a modified exosome precipitation protocol, which also yielded the highest quantities of microRNA and mRNA and, therefore, is ideal for subsequent RNA profiling. This method is likewise suitable for downstream proteomic analyses if an ultracentrifuge is not available and/or a large number of samples are to be processed. Two of the ultracentrifugation methods, however, are better options for exosome isolation if an ultracentrifuge is available and few samples will be processed for proteomic analysis. Thus, our modified exosome precipitation method is a simple, fast, highly scalable, and effective alternative for the isolation of exosomes, and may facilitate the identification of exosomal biomarkers from urine.
Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/orina , Pruebas Genéticas/métodos , MicroARNs/orina , Proteómica/métodos , ARN Mensajero/orina , Insuficiencia Renal Crónica , Biomarcadores/orina , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/orina , Electroforesis/métodos , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/aislamiento & purificación , Humanos , MicroARNs/genética , MicroARNs/aislamiento & purificación , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/orina , Ultracentrifugación/métodos , Uromodulina/orinaRESUMEN
Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome, exhibit a diverse range of biological functions, and exert effects through a variety of mechanisms. The sheer number of lncRNAs in the human genome has raised important questions about their potential biological significance and roles in human health and disease. Technological and computational advances have enabled functional annotation of a large number of lncRNAs. Though the number of publications related to lncRNAs has escalated in recent years, relatively few have focused on those involved in hepatic physiology and pathology. We provide an overview of evolving lncRNA classification systems and characteristics and highlight important advances in our understanding of the contribution of lncRNAs to liver disease, with a focus on nonalcoholic steatohepatitis, hepatocellular carcinoma, and cholestatic liver disease.