Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 386(6): 531-543, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34910859

RESUMEN

BACKGROUND: NVX-CoV2373 is an adjuvanted, recombinant spike protein nanoparticle vaccine that was shown to have clinical efficacy for the prevention of coronavirus disease 2019 (Covid-19) in phase 2b-3 trials in the United Kingdom and South Africa, but its efficacy had not yet been tested in North America. METHODS: We conducted a phase 3, randomized, observer-blinded, placebo-controlled trial in the United States and Mexico during the first half of 2021 to evaluate the efficacy and safety of NVX-CoV2373 in adults (≥18 years of age) who had not had severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Participants were randomly assigned in a 2:1 ratio to receive two doses of NVX-CoV2373 or placebo 21 days apart. The primary objective was to determine vaccine efficacy against reverse-transcriptase-polymerase-chain-reaction-confirmed Covid-19 occurring at least 7 days after the second dose. Vaccine efficacy against moderate-to-severe disease and against different variants was also assessed. RESULTS: Of the 29,949 participants who underwent randomization between December 27, 2020, and February 18, 2021, a total of 29,582 (median age, 47 years; 12.6% ≥65 years of age) received at least one dose: 19,714 received vaccine and 9868 placebo. Over a period of 3 months, 77 cases of Covid-19 were noted - 14 among vaccine recipients and 63 among placebo recipients (vaccine efficacy, 90.4%; 95% confidence interval [CI], 82.9 to 94.6; P<0.001). Ten moderate and 4 severe cases occurred, all in placebo recipients, yielding vaccine efficacy against moderate-to-severe disease of 100% (95% CI, 87.0 to 100). Most sequenced viral genomes (48 of 61, 79%) were variants of concern or interest - largely B.1.1.7 (alpha) (31 of the 35 genomes for variants of concern, 89%). Vaccine efficacy against any variant of concern or interest was 92.6% (95% CI, 83.6 to 96.7). Reactogenicity was mostly mild to moderate and transient but was more frequent among NVX-CoV2373 recipients than among placebo recipients and was more frequent after the second dose than after the first dose. CONCLUSIONS: NVX-CoV2373 was safe and effective for the prevention of Covid-19. Most breakthrough cases were caused by contemporary variant strains. (Funded by Novavax and others; PREVENT-19 ClinicalTrials.gov number, NCT04611802.).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/prevención & control , Eficacia de las Vacunas , Adolescente , Adulto , Anciano , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de Ácido Nucleico para COVID-19 , Vacunas contra la COVID-19/efectos adversos , Humanos , Incidencia , Masculino , México , Persona de Mediana Edad , SARS-CoV-2 , Método Simple Ciego , Estados Unidos
2.
Chem Soc Rev ; 53(7): 3327-3349, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391026

RESUMEN

Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.


Asunto(s)
Optogenética , Rodopsinas Microbianas , Rodopsinas Microbianas/genética , Transducción de Señal
3.
J Infect Dis ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839047

RESUMEN

BACKGROUND: Pregnant people with COVID-19 experience higher risk for severe disease and adverse pregnancy outcomes, but no pharmacokinetic (PK) data exist to support dosing of COVID-19 therapeutics during pregnancy. We report PK and safety data for intravenous remdesivir in pregnancy. METHODS: IMPAACT 2032 was a phase IV prospective, open-label, non-randomized opportunistic study of hospitalized pregnant and non-pregnant women receiving intravenous remdesivir as part of clinical care. Intensive PK sampling was performed on infusion days 3, 4, or 5 with collection of plasma and peripheral blood mononuclear cells (PBMCs). Safety data were recorded from first infusion through 4 weeks post-last infusion and at delivery. Geometric mean ratios (GMR) (90% confidence intervals [CI]) of PK parameters between pregnant and non-pregnant women were calculated. RESULTS: Fifty-three participants initiated remdesivir (25 pregnant; median (IQR) gestational age 27.6 (24.9, 31.0) weeks). Plasma exposures of remdesivir, its two major metabolites (GS-704277 and GS-441524), and the free remdesivir fraction were similar between pregnant and non-pregnant participants. Concentrations of the active triphosphate (GS-443902) in PBMCs increased 2.04-fold (90% CI 1.35, 3.03) with each additional infusion in non-pregnant versus pregnant participants. Three adverse events in non-pregnant participants were related to treatment (one Grade 3; two Grade 2 resulting in treatment discontinuation). There were no treatment-related adverse pregnancy outcomes or congenital anomalies detected. CONCLUSIONS: Plasma remdesivir PK parameters were comparable between pregnant and non-pregnant women, and no safety concerns were identified based on our limited data. These findings suggest no dose adjustments are indicated for intravenous remdesivir during pregnancy.

4.
Hum Mol Genet ; 31(21): 3694-3714, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35567546

RESUMEN

Parkinson's disease (PD) is a neurological disorder with complex interindividual etiology that is becoming increasingly prevalent worldwide. Elevated alpha-synuclein levels can increase risk of PD and may influence epigenetic regulation of PD pathways. Here, we report genome-wide DNA methylation and hydroxymethylation alterations associated with overexpression of two PD-linked alpha-synuclein variants (wild-type and A30P) in LUHMES cells differentiated to dopaminergic neurons. Alpha-synuclein altered DNA methylation at thousands of CpGs and DNA hydroxymethylation at hundreds of CpGs in both genotypes, primarily in locomotor behavior and glutamate signaling pathway genes. In some cases, epigenetic changes were associated with transcription. SMITE network analysis incorporating H3K4me1 ChIP-seq to score DNA methylation and hydroxymethylation changes across promoters, enhancers, and gene bodies confirmed epigenetic and transcriptional deregulation of glutamate signaling modules in both genotypes. Our results identify distinct and shared impacts of alpha-synuclein variants on the epigenome, and associate alpha-synuclein with the epigenetic etiology of PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Epigénesis Genética , Epigenómica , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Transducción de Señal/genética , Glutamatos/genética , Glutamatos/metabolismo
5.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37018156

RESUMEN

MOTIVATION: Relation extraction (RE) is a crucial process to deal with the amount of text published daily, e.g. to find missing associations in a database. RE is a text mining task for which the state-of-the-art approaches use bidirectional encoders, namely, BERT. However, state-of-the-art performance may be limited by the lack of efficient external knowledge injection approaches, with a larger impact in the biomedical area given the widespread usage and high quality of biomedical ontologies. This knowledge can propel these systems forward by aiding them in predicting more explainable biomedical associations. With this in mind, we developed K-RET, a novel, knowledgeable biomedical RE system that, for the first time, injects knowledge by handling different types of associations, multiple sources and where to apply it, and multi-token entities. RESULTS: We tested K-RET on three independent and open-access corpora (DDI, BC5CDR, and PGR) using four biomedical ontologies handling different entities. K-RET improved state-of-the-art results by 2.68% on average, with the DDI Corpus yielding the most significant boost in performance, from 79.30% to 87.19% in F-measure, representing a P-value of 2.91×10-12. AVAILABILITY AND IMPLEMENTATION: https://github.com/lasigeBioTM/K-RET.


Asunto(s)
Ontologías Biológicas , Minería de Datos , Minería de Datos/métodos , Bases de Datos Factuales
6.
Int Arch Allergy Immunol ; 185(3): 260-266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38113870

RESUMEN

INTRODUCTION: The possible influence of sensitization to aeroallergens on omalizumab response in chronic spontaneous urticaria (CSU) has been insufficiently investigated. This study's aim was to investigate atopy's influence on omalizumab response in CSU patients. METHOD: Retrospective study of CSU patients followed at a Portuguese Urticaria Center of Reference and Excellence (UCARE), treated with omalizumab for at least 6 months, between 2015 and 2022. At T0, all patients underwent quantification of specific immunoglobulin E (IgE) for total extract of most prevalent aeroallergens (ImmunoCAP Thermo Fisher Scientific®) and were divided in 2 groups, according to their response to omalizumab during the first 16 weeks of treatment: responders (R) (UAS7 <7) versus partial (PR) (UAS7 = 7-15) and nonresponders (UAS7 >15). R were further classified as fast (FR) (4-6 weeks) and slow responders (SR) (12-16 weeks). Total serum IgE, circulating eosinophil, and basophil counts were compared between groups at T0. p < 0.05 was considered statistically significant (SPSS® v25.0). RESULTS: Ninety-six patients (80% female) were studied, mean age 49 ± 14 years. Median CSU duration pre-omalizumab was 3 (0.6-20) years and mean omalizumab treatment duration was 3.7 ± 2.3 years. 38 (40%) had concomitant chronic inducible urticaria and 72 (75%) angioedema. Based on positive results of the specific IgE assay, 35 patients (36%) were considered atopic. Most patients (n = 30; 86%) were sensitized to house dust mites (HDM) (Dermatophagoides farinae = 28, Dermatophagoides pteronyssinus = 27, Blomia tropicalis = 19, Lepidoglyphus destructor = 17), followed by pollens (n = 12; 34%) (mixture of grasses = 10, Olea europaea = 7, Parietaria officinalis = 6), epithelia (n = 9; 26%) (dog = 8, cat = 7), and fungi (Alternaria alternata = 4; 11%). Eight patients (23%) were monosensitized to HDM and 4 (11%) to pollens. No significant association was found between aeroallergen sensitization and CSU duration, concomitant chronic inducible urticaria, or angioedema. Atopic patients featured significantly higher levels of baseline total serum IgE than nonatopic (469 vs. 94 U/mL, respectively; p = 0.0009). Mean baseline counts of eosinophils and basophils were not significantly different between atopic and non-atopic, respectively: eosinophils (128 vs. 121/mm3) and basophils (26 vs. 28/mm3). Regarding response to omalizumab, most patients (58; 60%) were responders: FR - 46 (79%); SR - 12 (21%). There was no significant association between aeroallergen sensitization and omalizumab response or speed of response. CONCLUSIONS: As far as we know, this is the first study exploring the influence of atopy sensitization pattern on omalizumab response in CSU. According to our results, presence of atopy/sensitization pattern does not influence omalizumab response in CSU patients.


Asunto(s)
Angioedema , Antialérgicos , Urticaria Crónica , Urticaria , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antialérgicos/uso terapéutico , Enfermedad Crónica , Urticaria Crónica Inducible , Urticaria Crónica/tratamiento farmacológico , Inmunoglobulina E , Omalizumab/uso terapéutico , Estudios Retrospectivos , Resultado del Tratamiento , Urticaria/tratamiento farmacológico
7.
Environ Health ; 23(1): 51, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831396

RESUMEN

BACKGROUND: Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh. METHODS: We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure. RESULTS: We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). CONCLUSIONS: Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.


Asunto(s)
Arsénico , Ácido Fólico , Disrafia Espinal , Humanos , Ácido Fólico/uso terapéutico , Bangladesh/epidemiología , Disrafia Espinal/prevención & control , Disrafia Espinal/epidemiología , Disrafia Espinal/inducido químicamente , Estudios de Casos y Controles , Femenino , Arsénico/análisis , Lactante , Masculino , Adulto , Recién Nacido , Embarazo , Contaminantes Químicos del Agua/análisis , Exposición Materna , Adulto Joven , Agua Potable/química , Agua Potable/análisis
8.
Cell Mol Life Sci ; 80(6): 166, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249642

RESUMEN

Parkinson's disease (PD) is a multifactorial neurodegenerative disease characterized by the loss of dopaminergic neurons in the midbrain. In the prodromal phase several autonomic symptoms including orthostatic hypotension and constipation are correlated with increased α-synuclein pathology in peripheral tissues. It is currently accepted that some idiopathic PD cases may start in the gut (body-first PD) with accumulation of pathological α-synuclein in enteric neurons that may subsequently propagate caudo-rostrally to the central nervous system. In addition to the already-established regulation of synaptic vesicle trafficking, α-synuclein also seems to play a role in neuronal innate immunity after infection. Our goal was to understand if seeding the gut with the foodborne pathogen Listeria monocytogenes by oral gavage would impact gut immunity and eventually the central nervous system. Our results demonstrate that L. monocytogenes infection induced oligomerization of α-synuclein in the ileum, along with a pronounced pro-inflammatory local and systemic response that ultimately culminated in neuronal mitochondria dysfunction. We propose that, having evolved from ancestral endosymbiotic bacteria, mitochondria may be directly targeted by virulence factors of intracellular pathogens, and that mitochondrial dysfunction and fragmentation resulting also from the activation of the innate immune system at the gut level, trigger innate immune responses in midbrain neurons, which include α-synuclein oligomerization and neuroinflammation, all of which hallmarks of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , alfa-Sinucleína , Enfermedades Neurodegenerativas/patología , Mitocondrias/patología , Neuronas Dopaminérgicas/patología
9.
Metab Brain Dis ; 39(5): 885-893, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795261

RESUMEN

Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (equal to or less than 45 vs. older than 45 years). Group means were compared using Welch's one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p = 0.6388), but higher than the unhealthy group (p < 0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p = 0.7819) and lower than the healthy group (p = 0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.


Asunto(s)
Hispánicos o Latinos , Proteína KRIT1 , Mutación , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios Transversales , Proteína KRIT1/genética , Hispánicos o Latinos/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Proyectos Piloto , Agua , Factores de Edad , Adulto Joven , Anciano , Imagen por Resonancia Magnética
10.
PLoS Genet ; 17(3): e1009407, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33657088

RESUMEN

Parkinson's disease is a neurodegenerative disorder associated with misfolding and aggregation of α-synuclein as a hallmark protein. Two yeast strain collections comprising conditional alleles of essential genes were screened for the ability of each allele to reduce or improve yeast growth upon α-synuclein expression. The resulting 98 novel modulators of α-synuclein toxicity clustered in several major categories including transcription, rRNA processing and ribosome biogenesis, RNA metabolism and protein degradation. Furthermore, expression of α-synuclein caused alterations in pre-rRNA transcript levels in yeast and in human cells. We identified the nucleolar DEAD-box helicase Dbp4 as a prominent modulator of α-synuclein toxicity. Downregulation of DBP4 rescued cells from α-synuclein toxicity, whereas overexpression led to a synthetic lethal phenotype. We discovered that α-synuclein interacts with Dbp4 or its human ortholog DDX10, sequesters the protein outside the nucleolus in yeast and in human cells, and stabilizes a fraction of α-synuclein oligomeric species. These findings provide a novel link between nucleolar processes and α-synuclein mediated toxicity with DDX10 emerging as a promising drug target.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Multimerización de Proteína , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Amiloide/ultraestructura , Regulación de la Expresión Génica , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Modelos Biológicos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Unión Proteica , Transporte de Proteínas , Levaduras/genética , Levaduras/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
11.
Gut ; 72(1): 73-89, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34836918

RESUMEN

OBJECTIVE: Idiopathic Parkinson's disease (PD) is characterised by alpha-synuclein (aSyn) aggregation and death of dopaminergic neurons in the midbrain. Recent evidence posits that PD may initiate in the gut by microbes or their toxins that promote chronic gut inflammation that will ultimately impact the brain. In this work, we sought to demonstrate that the effects of the microbial toxin ß-N-methylamino-L-alanine (BMAA) in the gut may trigger some PD cases, which is especially worrying as this toxin is present in certain foods but not routinely monitored by public health authorities. DESIGN: To test the hypothesis, we treated wild-type mice, primary neuronal cultures, cell lines and isolated mitochondria with BMAA, and analysed its impact on gut microbiota composition, barrier permeability, inflammation and aSyn aggregation as well as in brain inflammation, dopaminergic neuronal loss and motor behaviour. To further examine the key role of mitochondria, we also determined the specific effects of BMAA on mitochondrial function and on inflammasome activation. RESULTS: BMAA induced extensive depletion of segmented filamentous bacteria (SFB) that regulate gut immunity, thus triggering gut dysbiosis, immune cell migration, increased intestinal inflammation, loss of barrier integrity and caudo-rostral progression of aSyn. Additionally, BMAA induced in vitro and in vivo mitochondrial dysfunction with cardiolipin exposure and consequent activation of neuronal innate immunity. These events primed neuroinflammation, dopaminergic neuronal loss and motor deficits. CONCLUSION: Taken together, our results demonstrate that chronic exposure to dietary BMAA can trigger a chain of events that recapitulate the evolution of the PD pathology from the gut to the brain, which is consistent with 'gut-first' PD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Mesencéfalo/metabolismo , Mesencéfalo/patología , Enfermedad de Parkinson/metabolismo , Inflamación/metabolismo , Mitocondrias/metabolismo
12.
Infection ; 51(5): 1273-1284, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36648627

RESUMEN

PURPOSE: Immunocompromised patients have a potentially increased risk for progression to severe COVID-19 and prolonged replication of SARS-CoV-2. This post hoc analysis examined outcomes among immunocompromised participants in the MOVe-OUT trial. METHODS: In phase 3 of MOVe-OUT, non-hospitalized at-risk adults with mild-to-moderate COVID-19 were randomized to receive molnupiravir 800 mg or placebo twice daily for 5 days. Immunocompromised participants were identified based on prior/concomitant medications and/or medical history. All-cause hospitalization/death, adverse events, SARS-CoV-2 titers, infectivity, and RNA sequences were compared between immunocompromised participants who received molnupiravir or placebo and with non-immunocompromised participants. RESULTS: Fifty-five of 1408 participants were considered immunocompromised. Compared to placebo, fewer molnupiravir-treated immunocompromised participants were hospitalized/died through Day 29 (22.6% [7/31] vs. 8.3% [2/24]), with fewer adverse events (45.2% [14/31] vs. 25.0% [6/24]). A larger mean change from baseline in SARS-CoV-2 RNA was observed with molnupiravir compared to placebo in non-immunocompromised participants (least squares mean [LSM] difference Day 5: - 0.31, 95% confidence interval [CI] - 0.47 to - 0.15), while the mean change was comparable between treatment groups in immunocompromised participants (LSM difference Day 5: 0.23, 95% CI - 0.71 to 1.17). Molnupiravir treatment was associated with increased clearance of infectious virus. Increased errors in viral nucleotide sequences in post-baseline samples compared to placebo support molnupiravir's mechanism of action and were not associated with observation of novel treatment-emergent amino acid substitutions in immunocompromised participants. CONCLUSION: Although the study population was small, these data suggest that molnupiravir treatment for mild-to-moderate COVID-19 in non-hospitalized immunocompromised adults is efficacious and safe and quickly reduces infectious SARS-CoV-2. GOV REGISTRATION NUMBER: NCT04575597.


Asunto(s)
COVID-19 , Adulto , Humanos , Tratamiento Farmacológico de COVID-19 , ARN Viral , SARS-CoV-2
13.
J Immunol ; 207(11): 2660-2672, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706932

RESUMEN

Type I IFN is essential for viral clearance but also contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), via aberrant nucleic acid-sensing pathways, leading to autoantibody production. Type III IFN (IFN-λ) is now appreciated to have a nonredundant role in viral infection, but few studies have addressed the effects of IFN-λ on immune cells given the more restricted expression of its receptor primarily to the epithelium. In this study, we demonstrate that B cells display a prominent IFN gene expression profile in patients with lupus. Serum levels of IFN-λ are elevated in SLE and positively correlate with B cell subsets associated with autoimmune plasma cell development, including CD11c+T-bet+CD21- B cells. Although B cell subsets express all IFN receptors, IFNLR1 strongly correlates with the CD11c+CD21- B cell expansion, suggesting that IFN-λ may be an unappreciated driver of the SLE IFN signature and B cell abnormalities. We show that IFN-λ potentiates gene transcription in human B cells typically attributed to type I IFN as well as expansion of T-bet-expressing B cells after BCR and TLR7/8 stimulation. Further, IFN-λ promotes TLR7/8-mediated plasmablast differentiation and increased IgM production. CD11c+ B cells demonstrate IFN-λ hyperresponsive signaling compared with other B cell subsets, suggesting that IFN-λ accelerates plasma cell differentiation through this putative extrafollicular pathway. In summary, our data support type III IFN-λ as a cytokine promoting the Ab-secreting cell pool in human viral and autoimmune disease.


Asunto(s)
Linfocitos B/inmunología , Interferones/inmunología , Lupus Eritematoso Sistémico/inmunología , Células Plasmáticas/inmunología , Adulto , Anciano , Diferenciación Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901773

RESUMEN

Mitochondria play a key role in regulating host metabolism, immunity and cellular homeostasis. Remarkably, these organelles are proposed to have evolved from an endosymbiotic association between an alphaproteobacterium and a primitive eukaryotic host cell or an archaeon. This crucial event determined that human cell mitochondria share some features with bacteria, namely cardiolipin, N-formyl peptides, mtDNA and transcription factor A, that can act as mitochondrial-derived damage-associated molecular patterns (DAMPs). The impact of extracellular bacteria on the host act largely through the modulation of mitochondrial activities, and often mitochondria are themselves immunogenic organelles that can trigger protective mechanisms through DAMPs mobilization. In this work, we demonstrate that mesencephalic neurons exposed to an environmental alphaproteobacterium activate innate immunity through toll-like receptor 4 and Nod-like receptor 3. Moreover, we show that mesencephalic neurons increase the expression and aggregation of alpha-synuclein that interacts with mitochondria, leading to their dysfunction. Mitochondrial dynamic alterations also affect mitophagy which favors a positive feedback loop on innate immunity signaling. Our results help to elucidate how bacteria and neuronal mitochondria interact and trigger neuronal damage and neuroinflammation and allow us to discuss the role of bacterial-derived pathogen-associated molecular patterns (PAMPs) in Parkinson's disease etiology.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Mitocondrias/metabolismo , Inmunidad Innata , Alarminas/metabolismo , Bacterias , Neuronas/metabolismo
15.
J Environ Manage ; 330: 117169, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621314

RESUMEN

Vermicomposting is the bio-oxidation and stabilization of organic matter involving relationships between the action of earthworms and microorganisms and the activation and dynamics of several enzyme activities. Semi-arid farmers to make (extra) money and organic production, produce their vermicompost using plant residues and animal manure, but there is no information about the final product generated. Thus, this study aimed to analyze the potential of vermicomposting with mixtures of animal manure and vegetable leaves in the development of Eisenia foetida, microbial biomass, and enzymatic activity in the semi-arid region, Brazil. The experimental design applied was randomized block in a 6 × 4 factorial scheme with four replicates, with six treatments (mixtures of cattle manure, goat manure, cashew leaves, and catanduva leaves) and evaluated at four-time intervals (30, 60, 90, and 120 days of vermicomposting). The treatments were placed in polyethylene pots in the same site, environmental conditions, and residues proportions as used by farmers. The characteristics analyzed were the number of earthworms (NE), total earthworm biomass (TEB) and earthworm multiplication index (MI), microbial biomass carbon (MBC), and activities of enzymes ß-glucosidase, dehydrogenase, alkaline and acid phosphatases. The cattle manure vermicomposted shows the highest average values observed for NE, MI, TEB, MBC, and enzymatic activity, regardless of the plant leaves mix. In general, the enzymes activities were found in the descending order of ß-glucosidase > alkaline phosphatase > dehydrogenase > acid phosphatase. The maturation dynamics of vermicompost were characterized by a decline in the microbial population and number and biomass of earthworms in the substrate and consequently a decrease in new enzyme synthesis and degradation of the remaining enzyme pool. Microbial biomass and enzymatic activity were indicators for changes in the quality of vermicompost.


Asunto(s)
Celulasas , Oligoquetos , Animales , Bovinos , Biomasa , Carbono/metabolismo , Celulasas/metabolismo , Estiércol , Oligoquetos/metabolismo , Oxidorreductasas/metabolismo , Suelo , Verduras/metabolismo
16.
Clin Infect Dis ; 75(4): 690-701, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34864943

RESUMEN

BACKGROUND: Therapies for refractory cytomegalovirus infections (with or without resistance [R/R]) in transplant recipients are limited by toxicities. Maribavir has multimodal anti-cytomegalovirus activity through the inhibition of UL97 protein kinase. METHODS: In this phase 3, open-label study, hematopoietic-cell and solid-organ transplant recipients with R/R cytomegalovirus were randomized 2:1 to maribavir 400 mg twice daily or investigator-assigned therapy (IAT; valganciclovir/ganciclovir, foscarnet, or cidofovir) for 8 weeks, with 12 weeks of follow-up. The primary endpoint was confirmed cytomegalovirus clearance at end of week 8. The key secondary endpoint was achievement of cytomegalovirus clearance and symptom control at end of week 8, maintained through week 16. RESULTS: 352 patients were randomized (235 maribavir; 117 IAT). Significantly more patients in the maribavir versus IAT group achieved the primary endpoint (55.7% vs 23.9%; adjusted difference [95% confidence interval (CI)]: 32.8% [22.80-42.74]; P < .001) and key secondary endpoint (18.7% vs 10.3%; adjusted difference [95% CI]: 9.5% [2.02-16.88]; P = .01). Rates of treatment-emergent adverse events (TEAEs) were similar between groups (maribavir, 97.4%; IAT, 91.4%). Maribavir was associated with less acute kidney injury versus foscarnet (8.5% vs 21.3%) and neutropenia versus valganciclovir/ganciclovir (9.4% vs 33.9%). Fewer patients discontinued treatment due to TEAEs with maribavir (13.2%) than IAT (31.9%). One patient per group had fatal treatment-related TEAEs. CONCLUSIONS: Maribavir was superior to IAT for cytomegalovirus viremia clearance and viremia clearance plus symptom control maintained post-therapy in transplant recipients with R/R cytomegalovirus. Maribavir had fewer treatment discontinuations due to TEAEs than IAT. Clinical Trials Registration. NCT02931539 (SOLSTICE).


Asunto(s)
Infecciones por Citomegalovirus , Viremia , Antivirales/efectos adversos , Citomegalovirus , Diclororribofuranosil Benzoimidazol/análogos & derivados , Farmacorresistencia Viral , Foscarnet/uso terapéutico , Ganciclovir/uso terapéutico , Humanos , Valganciclovir/uso terapéutico , Viremia/tratamiento farmacológico
17.
EMBO J ; 37(1): 139-159, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29146773

RESUMEN

Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.


Asunto(s)
Fijadores/química , Formaldehído/química , Glioxal/química , Inmunohistoquímica/métodos , Microscopía Fluorescente/métodos , Proteínas del Tejido Nervioso/metabolismo , Fijación del Tejido/métodos , Animales , Células COS , Chlorocebus aethiops , Drosophila melanogaster , Células HeLa , Humanos , Ratones
18.
Eur J Immunol ; 51(12): 3194-3201, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34564853

RESUMEN

Accelerate lung repair in SARS-CoV-2 pneumonia is essential for pandemic handling. Innate lymphoid cells (ILCs) are likely players, given their role in mucosal protection and tissue homeostasis. We studied ILC subpopulations at two time points in a cohort of patients admitted in the hospital due to SARS-CoV-2 infection. COVID-19 patients with moderate/severe respiratory failure featured profound depletion of circulating ILCs at hospital admission, in agreement with overall lymphocyte depletion. However, ILCs recovered in direct correlation with lung function improvement as measured by oxygenation index and in negative association with inflammatory and lung/endothelial damage markers like RAGE. While both ILC1 and ILC2 expanded, ILC2 showed the most striking phenotype changes, with CCR10 upregulation in strong correlation with these parameters. Overall, CCR10+ ILC2 emerge as relevant contributors to SARS-CoV-2 pneumonia recovery.


Asunto(s)
Biomarcadores/metabolismo , COVID-19/inmunología , Pulmón/patología , Linfocitos/inmunología , Neumonía Viral/inmunología , Receptores CCR10/metabolismo , SARS-CoV-2/fisiología , Adulto , Anciano , Antígenos de Neoplasias/metabolismo , Proliferación Celular , Citocinas/metabolismo , Femenino , Humanos , Inmunidad Innata , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Recuperación de la Función , Células Th2/inmunología , Regulación hacia Arriba
19.
Mol Phylogenet Evol ; 177: 107618, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36031107

RESUMEN

The microhylid frogs of the New Guinea region are the largest and most ecologically diverse subfamily (Asterophryinae) of one of the largest anuran families in the world and can live in communities of up to 20 species. While there has been recent progress in resolving the phylogenetic relationships of Asterophryinae, significant uncertainties remain, impeding further progress in understanding the evolution of microhabitat use, parental care, and life history variation in this group. In particular, the early divergences at the base of the tree remain unclear; as does the monophyly of some genera; and recent studies have discovered that species with wide geographic distribution are instead cryptic species complexes. In this study, we fortified geographic sampling of the largest previous phylogenetic effort by sequencing an additional 62 taxa and increased data quality and quantity by adding new layers of data vetting and by filling in previously incomplete loci to the five gene dataset (2 mitochondrial, 3 nuclear protein-coding genes) to obtain a dataset that is now 99% complete in over 2400 characters for 233 samples (205 taxa) of Asterophryinae and 3 outgroup taxa, and analyzed microhabitat use data for these taxa from field data and data collected from the literature. Importantly, our sampling includes complete community complements at 19 sites as well as representatives at over 80 sites across New Guinea and its offshore islands. We present a highly resolved molecular phylogeny which, for the first time, has over 95% of nodes supported (84% highly supported) whether using Maximum Likelihood or Bayesian Inference, allowing clarification of all genera (whether monophyletic or clearly not), their sister genera relationships, as well as an age estimate for the Asterophryinae at approximately 20MYA. Early generic diversification occurring between 17 and 12 MYA gave rise to a surprising diversity of about 18 genera as well as the 5 putative microhabitat types. Our tree reveals extensive cryptic diversity calling any widespread taxa into doubt, and clearly demonstrates that complex multispecies communities of Asterophryinae are ecologically diverse, are numerous, and of ancient origin across New Guinea. We discuss the implications of our phylogeny for explaining the explosive diversification of Asterophryinae as the result of adaptive radiation, niche conservatism, and non-adaptive radiation.


Asunto(s)
Anuros , Núcleo Celular , Animales , Anuros/genética , Teorema de Bayes , Núcleo Celular/genética , Humanos , Proteínas Nucleares/genética , Filogenia
20.
Electrophoresis ; 43(16-17): 1667-1700, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35767850

RESUMEN

Biomarkers are relevant indicators of the physiological state of an individual. Although biomarkers can be found in diseased tissue and different biofluids, sampling from blood plasma is relatively easy and less invasive. Among the molecular biomarkers that can be found circulating in plasma are proteins, metabolites, nucleic acids, and exosomes. Some of these plasma-circulating biomarkers are now employed for patient stratification in a broad range of diseases with high sensitivity and specificity and are useful in early diagnosis, initial risk assessment, and therapy selection. However, there is a pressing need to develop novel approaches for biomarker analysis that can be translated into clinical or other settings without complex methodologies or instrumentation. Microfluidics has been touted as a promising technology to carry out this task because it offers high-throughput, automation, multiplexed detection, and portability, possibly overcoming the bottleneck that prevent the translation of novel biomarkers to the point-of-care (POC). Here, we provide a review of the microfluidic systems that have been engineered to detect circulating molecular biomarkers in blood plasma. We also review the different microfluidic approaches for plasma enrichment, which are now being integrated with microfluidic-based biomarker analyzers. Such integration should lead to cost-effective solutions in in vitro diagnostics, with special relevance to POC platforms.


Asunto(s)
Técnicas Analíticas Microfluídicas , Ácidos Nucleicos , Biomarcadores , Humanos , Microfluídica/métodos , Sistemas de Atención de Punto , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA