RESUMEN
INTRODUCTION: Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by joint inflammation and bone damage, that not only restricts patient activity but also tends to be accompanied by a series of complications, seriously affecting patient prognosis. Peroxisome proliferator-activated receptor gamma (PPARG), a receptor that controls cellular metabolism, regulates the function of immune cells and stromal cells. Previous studies have shown that PPARG is closely related to the regulation of inflammation. However, the role of PPARG in regulating the pathological processes of RA is poorly understood. MATERIALS AND METHODS: PPARG expression was examined in the synovial tissues and peripheral blood mononuclear cells (PBMCs) from RA patients and the paw of collagen-induced arthritis (CIA) model rats. Molecular biology experiments were designed to examine the effect of PPARG and cannabidiol (CBD) on RAW264.7 cells and CIA rats. RESULTS: The results reveal that PPARG accelerates reactive oxygen species (ROS) clearance by promoting autophagy, thereby inhibiting ROS-mediated macrophage polarization and NLRP3 inflammasome activation. Notably, CBD may be a promising candidate for understanding the mechanism by which PPARG regulates autophagy-mediated inflammation. CONCLUSIONS: Taken together, these findings indicate that PPARG may have a role for distinguishing between RA patients and healthy control, and for distinguishing RA activity; moreover, PPARG could be a novel pharmacological target for alleviating RA through the mediation of autophagy. CBD can act as a PPARG agonist that alleviates the inflammatory progression of RA.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Autofagia , Inflamación , PPAR gamma , Especies Reactivas de Oxígeno , Animales , Femenino , Humanos , Masculino , Ratones , Ratas , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Artritis Reumatoide/inmunología , Autofagia/efectos de los fármacos , Cannabidiol/farmacología , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/inmunología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , PPAR gamma/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The role of abnormal epigenetic modifications, particularly DNA methylation, in the pathogenesis of autoimmune rheumatic diseases (ARDs) has garnered increasing attention. Lymphocyte dysfunction is a significant contributor to the pathogenesis of ARDs. Methylation is crucial for maintaining normal immune system function, and aberrant methylation can hinder lymphocyte differentiation, resulting in functional abnormalities that disrupt immune tolerance, leading to the excessive expression of inflammatory cytokines, thereby exacerbating the onset and progression of ARDs. Recent studies suggest that methylation-related factors have the potential to serve as biomarkers for monitoring the activity of ARDs. This review summarizes the current state of research on the impact of DNA and RNA methylation on the development, differentiation, and function of T and B cells and examines the progress of these epigenetic modifications in studies of six specific ARDs: systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, juvenile idiopathic arthritis, and ankylosing spondylitis. Additionally, we propose that exploring the interplay between RNA methylation and DNA methylation may represent a novel direction for understanding the pathogenesis of ARDs and developing novel treatment strategies.
Asunto(s)
Enfermedades Autoinmunes , Linfocitos B , Metilación de ADN , Epigénesis Genética , Enfermedades Reumáticas , Linfocitos T , Humanos , Enfermedades Reumáticas/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Enfermedades Autoinmunes/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , AnimalesRESUMEN
Treg cell-based therapy has exhibited promising efficacy in combatting rheumatoid arthritis (RA). Dihydroartemisinin (DHA) exerts broad immunomodulatory effects across various diseases, with its recent spotlight on T-cell regulation in autoimmune conditions. The modulation of DHA on Treg cells and its therapeutic role in RA has yet to be fully elucidated. This study seeks to unveil the influence of DHA on Treg cells in RA and furnish innovative substantiation for the potential of DHA to ameliorate RA. To this end, we initially scrutinized the impact of DHA-modulated Treg cells on osteoclast (OC) formation in vitro using Treg cell-bone marrow-derived monocyte (BMM) coculture systems. Subsequently, employing the collagen-induced arthritis (CIA) rat model, we validated the efficacy of DHA and probed its influence on Treg cells in the spleen and popliteal lymph nodes (PLN). Finally, leveraging deep proteomic analysis with data-independent acquisition (DIA) and parallel accumulation-serial fragmentation (PASEF) technology, we found the alterations in the Treg cell proteome in PLN by proteomic analysis. Our findings indicate that DHA augmented suppressive Treg cells, thereby impeding OC formation in vitro. Consistently, DHA mitigated erosive joint destruction and osteoclastogenesis by replenishing splenic and joint-draining lymph node Treg cells in CIA rats. Notably, DHA induced alterations in the Treg cell proteome in PLN, manifesting distinct upregulation of alloantigen Col2a1 (Type II collagen alfa 1 chain) and CD8a (T-cell surface glycoprotein CD8 alpha chain) in Treg cells, signifying DHA's targeted modulation of Treg cells, rendering them more adept at sustaining immune tolerance and impeding bone erosion. These results unveil a novel facet of DHA in the treatment of RA.