Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Pharmacol Exp Ther ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849142

RESUMEN

Acute Kidney Injury (AKI) is characterized by an abrupt decline in kidney function and has been associated with excess risks of death, kidney disease progression, and cardiovascular events. The kidney has a high energetic demand with mitochondrial health being essential to renal function and damaged mitochondria has been reported across AKI subtypes. 5' adenosine monophosphate-activated protein kinase (AMPK) activation preserves cellular energetics through improvement of mitochondrial function and biogenesis when ATP levels are low such as under ischemia-induced AKI. We developed a selective potent small molecule pan AMPK activator, compound 1, and tested its ability to increase AMPK activity and preserve kidney function during ischemia/reperfusion injury in rats. A single administration of 1 caused sustained activation of AMPK for at least 24 hours, protected against acute tubular necrosis, and reduced clinical markers of tubular injury such as NephroCheck and Fractional Excretion of Sodium (FENa). Reduction in plasma creatinine and increased Glomerular Filtration Rate (GFR) indicated preservation of kidney function. Surprisingly, we observed a strong diuretic effect of AMPK activation associated with natriuresis both with and without AKI. Our findings demonstrate that activation of AMPK leads to protection of tubular function under hypoxic/ischemic conditions which holds promise as a potential novel therapeutic approach for AKI. Significance Statement No approved pharmacological therapies currently exist for acute kidney injury. We developed Compound 1 which dose-dependently activated AMPK in the kidney and protected kidney function and tubules after ischemic renal injury in the rat. This was accompanied by natriuresis in injured as well as uninjured rats.

2.
Bioorg Med Chem Lett ; 47: 128113, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991628

RESUMEN

Through an internal virtual screen at GlaxoSmithKline a distinct class of 2-phenylimidazo[1,2-a]pyridine-6-carboxamide H-PGDS inhibitors were discovered. Careful evaluation of crystal structures and SAR led to a novel, potent, and orally active imidazopyridine inhibitor of H-PGDS, 20b. Herein, describes the identification of 2 classes of inhibitors, their syntheses, and their challenges.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Estructura Molecular , Relación Estructura-Actividad
3.
Protein Expr Purif ; 164: 105455, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31306746

RESUMEN

Wolf-Hirschhorn Syndrome Candidate 1 (WHSC1; also known as NSD2) is a SET domain-containing histone lysine methyltransferase. A chromosomal translocation occurs in 15-20% of multiple myeloma patients and is associated with increased production of WHSC1 and poor clinical prognosis. To define the substrate requirements of NSD2, we established a platform for the large-scale production of recombinant polynucleosomes, based on authentic human histone proteins, expressed in E. coli, and complexed with linearized DNA. A brief survey of methyltransferases whose substrate requirements are recorded in the literature yielded expected results, lending credence to the fitness of our approach. This platform was readily 'codified' with respect to both position and extent of methylation at histone 3 lysines 18 and 36 and led to the conclusion that the most readily discernible activity of NSD2 in contact with a nucleosome substrate is dimethylation of histone 3 lysine 36. We further explored reaction mechanism, and conclude a processive, rather than distributive mechanism best describes the interaction of NSD2 with intact nucleosome substrates. The methods developed feature scale and flexibility and are suited to thorough pharmaceutical-scale drug discovery campaigns.


Asunto(s)
Escherichia coli/genética , N-Metiltransferasa de Histona-Lisina/genética , Nucleosomas/genética , Proteínas Represoras/genética , Escherichia coli/metabolismo , Expresión Génica , Células HeLa , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Nucleosomas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Especificidad por Sustrato
4.
Nature ; 492(7427): 108-12, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23051747

RESUMEN

In eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types. Additionally, somatic heterozygous mutations of Y641 and A677 residues within the catalytic SET domain of EZH2 occur in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The Y641 residue is the most frequently mutated residue, with up to 22% of germinal centre B-cell DLBCL and follicular lymphoma harbouring mutations at this site. These lymphomas have increased H3K27 tri-methylation (H3K27me3) owing to altered substrate preferences of the mutant enzymes. However, it is unknown whether specific, direct inhibition of EZH2 methyltransferase activity will be effective in treating EZH2 mutant lymphomas. Here we demonstrate that GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes. GSK126 effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines and markedly inhibits the growth of EZH2 mutant DLBCL xenografts in mice. Together, these data demonstrate that pharmacological inhibition of EZH2 activity may provide a promising treatment for EZH2 mutant lymphoma.


Asunto(s)
Indoles/farmacología , Indoles/uso terapéutico , Linfoma Folicular/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Mutación/genética , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Piridonas/farmacología , Piridonas/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Linfoma Folicular/enzimología , Linfoma Folicular/genética , Linfoma Folicular/patología , Linfoma de Células B Grandes Difuso/enzimología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Metilación/efectos de los fármacos , Ratones , Trasplante de Neoplasias , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Activación Transcripcional/efectos de los fármacos , Trasplante Heterólogo
6.
Nat Chem Biol ; 10(3): 181-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24390428

RESUMEN

Although therapeutic interventions of signal-transduction cascades with targeted kinase inhibitors are a well-established strategy, drug-discovery efforts to identify targeted phosphatase inhibitors have proven challenging. Herein we report a series of allosteric, small-molecule inhibitors of wild-type p53-induced phosphatase (Wip1), an oncogenic phosphatase common to multiple cancers. Compound binding to Wip1 is dependent on a 'flap' subdomain located near the Wip1 catalytic site that renders Wip1 structurally divergent from other members of the protein phosphatase 2C (PP2C) family and that thereby confers selectivity for Wip1 over other phosphatases. Treatment of tumor cells with the inhibitor GSK2830371 increases phosphorylation of Wip1 substrates and causes growth inhibition in both hematopoietic tumor cell lines and Wip1-amplified breast tumor cells harboring wild-type TP53. Oral administration of Wip1 inhibitors in mice results in expected pharmacodynamic effects and causes inhibition of lymphoma xenograft growth. To our knowledge, GSK2830371 is the first orally active, allosteric inhibitor of Wip1 phosphatase.


Asunto(s)
Aminopiridinas/química , Dipéptidos/química , Inhibidores Enzimáticos/farmacología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Administración Oral , Regulación Alostérica , Secuencias de Aminoácidos , Aminopiridinas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Dominio Catalítico , Línea Celular Tumoral , Dipéptidos/farmacología , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Femenino , Xenoinjertos , Humanos , Ratones , Ratones SCID , Modelos Biológicos , Neoplasias , Proteína Fosfatasa 2C
7.
Proc Natl Acad Sci U S A ; 109(8): 2989-94, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22323599

RESUMEN

Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 k(cat)/K(m) ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.


Asunto(s)
Alanina/genética , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Linfoma de Células B/enzimología , Linfoma de Células B/genética , Lisina/metabolismo , Mutación/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Línea Celular Tumoral , Análisis Mutacional de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Glicina/genética , Heterocigoto , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Complejo Represivo Polycomb 2 , Especificidad por Sustrato , Factores de Transcripción/química , Factores de Transcripción/metabolismo
8.
Commun Biol ; 5(1): 787, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931745

RESUMEN

Human spermine oxidase (hSMOX) plays a central role in polyamine catabolism. Due to its association with several pathological processes, including inflammation and cancer, hSMOX has garnered interest as a possible therapeutic target. Therefore, determination of the structure of hSMOX is an important step to enable drug discovery and validate hSMOX as a drug target. Using insights from hydrogen/deuterium exchange mass spectrometry (HDX-MS), we engineered a hSMOX construct to obtain the first crystal structure of hSMOX bound to the known polyamine oxidase inhibitor MDL72527 at 2.4 Å resolution. While the overall fold of hSMOX is similar to its homolog, murine N1-acetylpolyamine oxidase (mPAOX), the two structures contain significant differences, notably in their substrate-binding domains and active site pockets. Subsequently, we employed a sensitive biochemical assay to conduct a high-throughput screen that identified a potent and selective hSMOX inhibitor, JNJ-1289. The co-crystal structure of hSMOX with JNJ-1289 was determined at 2.1 Å resolution, revealing that JNJ-1289 binds to an allosteric site, providing JNJ-1289 with a high degree of selectivity towards hSMOX. These results provide crucial insights into understanding the substrate specificity and enzymatic mechanism of hSMOX, and for the design of highly selective inhibitors.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Animales , Dominio Catalítico , Humanos , Ratones , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Especificidad por Sustrato , Poliamino Oxidasa
9.
ACS Med Chem Lett ; 9(7): 736-740, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30034610

RESUMEN

Bone Morphogenetic Protein 1 (BMP1) inhibition is a potential method for treating fibrosis because BMP1, a member of the zinc metalloprotease family, is required to convert pro-collagen to collagen. A novel class of reverse hydroxamate BMP1 inhibitors was discovered, and cocrystal structures with BMP1 were obtained. The observed binding mode is unique in that the small molecule occupies the nonprime side of the metalloprotease pocket providing an opportunity to build in metalloprotease selectivity. Structure-guided modification of the initial hit led to the identification of an oral in vivo tool compound with selectivity over other metalloproteases. Due to irreversible inhibition of cytochrome P450 3A4 for this chemical class, the risk of potential drug-drug interactions was managed by optimizing the series for subcutaneous injection.

10.
J Biomol Screen ; 12(6): 881-90, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17579124

RESUMEN

In addition to selecting molecules of pharmacological interest, high-throughput screening campaigns often generate hits of undesirable mechanism, which cannot be exploited for drug discovery as they lead to obvious problems of specificity and developability. Examples of undesirable mechanisms are target alkylation/acylation and compound aggregation. Both types of "promiscuous" mechanisms have been described in the literature, as have methods for their detection. In addition to these mechanisms, compounds can also inhibit by oxidizing susceptible enzyme targets, such as metalloenzymes and cysteine-using enzymes. However, this redox phenomenon has been documented infrequently, and an easy method for detecting this behavior is missing. In this article, the authors describe direct proof of small-molecule oxidation of a cysteine protease by liquid chromatography/tandem mass spectrometry, develop a simple assay to predict this oxidizing behavior by compounds, and show the utility of this assay by demonstrating its ability to distinguish nuisance redox compounds from well-behaved inhibitors in 3 historical GlaxoSmithKline drug discovery efforts.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Oxidantes/análisis , Oxidación-Reducción , Catepsina L , Catepsinas/metabolismo , Cromatografía Liquida , Cisteína Endopeptidasas/metabolismo , Concentración 50 Inhibidora , Modelos Biológicos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Espectrometría de Masas en Tándem
11.
ACS Chem Biol ; 9(3): 622-9, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24304166

RESUMEN

EZH2/PRC2 catalyzes transcriptionally repressive methylation at lysine 27 of histone H3 and has been associated with numerous cancer types. Point mutations in EZH2 at Tyr641 and Ala677 identified in non-Hodgkin lymphomas alter substrate specificity and result in increased trimethylation at histone H3K27. Interestingly, EZH2/PRC2 is activated by binding H3K27me3 marks on histones, and this activation is proposed as a mechanism for self-propagation of gene silencing. Recent work has identified GSK126 as a potent, selective, SAM-competitive inhibitor of EZH2 capable of globally decreasing H3K27 trimethylation in cells. Here we show that activation of PRC2 by an H3 peptide trimethylated at K27 is primarily an effect on the rate-limiting step (kcat) with no effect on substrate binding (Km). Additionally, GSK126 is shown to have a significantly longer residence time of inhibition on the activated form of EZH2/PRC2 as compared to unactivated EZH2/PRC2. Overall inhibition constant (Ki*) values for GSK126 were determined to be as low as 93 pM and appear to be driven by slow dissociation of inhibitor from the activated enzyme. The data suggest that activation of EZH2 allows the enzyme to adopt a conformation that possesses greater affinity for GSK126. The long residence time of GSK126 may be beneficial in vivo and may result in durable target inhibition after drug systemic clearance.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indoles/farmacología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Piridonas/farmacología , Regulación Alostérica , Sitio Alostérico , Unión Competitiva , Relación Dosis-Respuesta a Droga , Proteína Potenciadora del Homólogo Zeste 2 , Inhibidores Enzimáticos/química , Células HeLa , Humanos , Indoles/química , Metilación , Nucleosomas/efectos de los fármacos , Nucleosomas/enzimología , Mutación Puntual , Complejo Represivo Polycomb 2/genética , Unión Proteica , Piridonas/química , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Tiempo
12.
J Biomol Screen ; 17(10): 1279-92, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22904200

RESUMEN

Histone methyltransferases (HMT) catalyze the methylation of histone tail lysines, resulting in changes in gene transcription. Misregulation of these enzymes has been associated with various forms of cancer, making this target class a potential new area for the development of novel chemotherapeutics. EZH2 is the catalytic component of the polycomb group repressive complex (PRC2), which selectively methylates histone H3 lysine 27 (H3K27). EZH2 is overexpressed in prostate, breast, bladder, brain, and other tumor types and is recognized as a molecular marker for cancer progression and aggressiveness. Several new reagents and assays were developed to aid in the identification of EZH2 inhibitors, and these were used to execute two high-throughput screening campaigns. Activity assays using either an H3K27 peptide or nucleosomes as substrates for methylation are described. The strategy to screen EZH2 with either a surrogate peptide or a natural substrate led to the identification of the same tractable series. Compounds from this series are reversible, are [(3)H]-S-adenosyl-L-methionine competitive, and display biochemical inhibition of H3K27 methylation.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Nucleosomas/metabolismo , Péptidos/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Ensayos de Selección de Medicamentos Antitumorales/métodos , Proteína Potenciadora del Homólogo Zeste 2 , Humanos , Indicadores y Reactivos , Cinética , Péptidos/antagonistas & inhibidores , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/química , Reproducibilidad de los Resultados
13.
ACS Med Chem Lett ; 3(12): 1091-6, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24900432

RESUMEN

The histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA