Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(5): e202312823, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38010646

RESUMEN

Concerns over the sustainability and end-of-life properties of fossil-derived surfactants have driven interest in bio-based alternatives. Lignocellulosic biomass with its polar functional groups is an obvious feedstock for surfactant production but its use is limited by process complexity and low yield. Here, we present a simple two-step approach to prepare bio-based amphiphiles directly from hemicellulose and lignin at high yields (29 % w/w based on the total raw biomass and >80 % w/w of these two fractions). Acetal functionalization of xylan and lignin with fatty aldehydes during fractionation introduced hydrophobic segments and subsequent defunctionalization by hydrogenolysis of the xylose derivatives or acidic hydrolysis of the lignin derivatives produced amphiphiles. The resulting biodegradable xylose acetals and/or ethers, and lignin-based amphiphilic polymers both largely retained their original natural structures, but exhibited competitive or superior surface activity in water/oil systems compared to common bio-based surfactants.


Asunto(s)
Lignina , Xilosa , Lignina/química , Biomasa , Agua , Tensoactivos , Hidrólisis
2.
Nature ; 531(7593): 215-9, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26961655

RESUMEN

Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Alimentos , Benceno/metabolismo , Benzoatos/metabolismo , Biomasa , Biomimética , Cesio/aislamiento & purificación , Cesio/metabolismo , Ácidos Dicarboxílicos/metabolismo , Furanos/metabolismo , Tecnología Química Verde , Enlace de Hidrógeno , Hidrogenación , Lignina/metabolismo , Potasio/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Temperatura
3.
J Am Chem Soc ; 143(41): 17226-17235, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34617746

RESUMEN

We explore the selective electrocatalytic hydrogenation of lignin monomers to methoxylated chemicals, of particular interest, when powered by renewable electricity. Prior studies, while advancing the field rapidly, have so far lacked the needed selectivity: when hydrogenating lignin-derived methoxylated monomers to methoxylated cyclohexanes, the desired methoxy group (-OCH3) has also been reduced. The ternary PtRhAu electrocatalysts developed herein selectively hydrogenate lignin monomers to methoxylated cyclohexanes-molecules with uses in pharmaceutics. Using X-ray absorption spectroscopy and in situ Raman spectroscopy, we find that Rh and Au modulate the electronic structure of Pt and that this modulating steers intermediate energetics on the electrocatalyst surface to facilitate the hydrogenation of lignin monomers and suppress C-OCH3 bond cleavage. As a result, PtRhAu electrocatalysts achieve a record 58% faradaic efficiency (FE) toward 2-methoxycyclohexanol from the lignin monomer guaiacol at 200 mA cm-2, representing a 1.9× advance in FE and a 4× increase in partial current density compared to the highest productivity prior reports. We demonstrate an integrated lignin biorefinery where wood-derived lignin monomers are selectively hydrogenated and funneled to methoxylated 2-methoxy-4-propylcyclohexanol using PtRhAu electrocatalysts. This work offers an opportunity for the sustainable electrocatalytic synthesis of methoxylated pharmaceuticals from renewable biomass.

4.
J Am Chem Soc ; 135(30): 11257-65, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23837635

RESUMEN

An intramolecular reaction catalyzed by Rh porphyrins was studied in the presence of interfacial electric fields. 1-Diazo-3,3-dimethyl-5-phenylhex-5-en-2-one (2) reacts with Rh porphyrins via a putative carbenoid intermediate to form cyclopropanation product 3,3-dimethyl-5-phenylbicyclo[3.1.0]hexan-2-one (3) and insertion product 3,3-dimethyl-2,3-dihydro-[1,1'-biphenyl]-4(1H)-one (4). To study this reaction in the presence of an interfacial electric field, Si electrodes coated with thin films of insulating dielectric layers were used as the opposing walls of a reaction vessel, and Rh porphyrin catalysts were localized to the dielectric-electrolyte interface. The charge density was varied at the interface by changing the voltage across the two electrodes. The product ratio was analyzed as a function of the applied voltage and the surface chemistry of the dielectric layer. In the absence of an applied voltage, the ratio of 3:4 was approximately 10:1. With a TiO2 surface, application of a voltage induced a Rh porphyrin-TiO2 interaction that resulted in an increase in the 3:4 ratio to a maximum in which 4 was nearly completely suppressed (>100:1). With an Al2O3 surface or an alkylphosphonate-coated surface, the voltage caused a decrease in the 3:4 ratio, with a maximum effect of lowering the ratio to 1:2. The voltage-induced decrease in the 3:4 ratio in the absence of TiO2 was consistent with a field-dipole effect that changed the difference in activation energies for the product-determining step to favor product 4. Effects were observed for porphyrin catalysts localized to the electrode-electrolyte interface either through covalent attachment or surface adsorption, enabling the selectivity to be controlled with unfunctionalized Rh porphyrins. The magnitude of the selectivity change was limited by the maximum interfacial charge density that could be attained before dielectric breakdown.

5.
Angew Chem Int Ed Engl ; 51(11): 2667-72, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22287537

RESUMEN

Problem solved: an air-stable 2-pyridyl borane that can effectively couple to a wide range of aryl and heteroaryl halides and pseudohalides has evaded the synthesis community for decades. The discovery that Cu(DEA)(2) powerfully enables palladium-mediated cross-couplings with air-stable boronates 1 has finally provided a general solution to this problem. DEA=diethanolamine, DMF=N,N'-dimethylformamide, Tf=trifluoromethanesulfonyl.


Asunto(s)
Piridinas/química , Soluciones/química , Boranos/química , Ácidos Borónicos/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cobre/química , Paladio/química
6.
Nat Chem ; 14(9): 976-984, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35739426

RESUMEN

The development of sustainable plastics from abundant renewable feedstocks has been limited by the complexity and efficiency of their production, as well as their lack of competitive material properties. Here we demonstrate the direct transformation of the hemicellulosic fraction of non-edible biomass into a tricyclic diester plastic precursor at 83% yield (95% from commercial xylose) during integrated plant fractionation with glyoxylic acid. Melt polycondensation of the resulting diester with a range of aliphatic diols led to amorphous polyesters (Mn = 30-60 kDa) with high glass transition temperatures (72-100 °C), tough mechanical properties (ultimate tensile strengths of 63-77 MPa, tensile moduli of 2,000-2,500 MPa and elongations at break of 50-80%) and strong gas barriers (oxygen transmission rates (100 µm) of 11-24 cc m-2 day-1 bar-1 and water vapour transmission rates (100 µm) of 25-36 g m-2 day-1) that could be processed by injection moulding, thermoforming, twin-screw extrusion and three-dimensional printing. Although standardized biodegradation studies still need to be performed, the inherently degradable nature of these materials facilitated their chemical recycling via methanolysis at 64 °C, and eventual depolymerization in room-temperature water.


Asunto(s)
Poliésteres , Azúcares , Lignina , Plásticos
7.
Nat Protoc ; 14(3): 921-954, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30778206

RESUMEN

Lignin is one of the most promising sources of renewable aromatic hydrocarbons. Current methods for its extraction from lignocellulosic biomass-which include the kraft, sulfite, and organosolv processes-result in the rapid formation of carbon-carbon bonds, leading to a condensed lignin that cannot be effectively depolymerized into its constituent monomers. Treatment of lignocellulosic biomass with aldehydes during lignin extraction generates an aldehyde-stabilized lignin that is uncondensed and can be converted into its monomers at near-theoretical yields. Here, we outline an efficient, reproducible, and scalable process for extracting and purifying this aldehyde-stabilized lignin as a solid, which can easily be re-dissolved in an organic solvent. Upon exposure to hydrogenolysis conditions, this material provides near-theoretical yields of aromatic monomers (~40-50% of the Klason lignin for a typical hardwood). Cellulose and hemicellulose are also efficiently fractionated. This protocol requires 6-7 h for the extraction of the stabilized lignin and a basic proficiency in synthetic chemistry.


Asunto(s)
Aldehídos/química , Biomasa , Lignina/metabolismo , Fraccionamiento Químico , Hidrógeno , Lignina/química , Madera/química
9.
Org Lett ; 12(10): 2314-7, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20465293

RESUMEN

A wide range of 2-pyridyl and other difficult-to-access heterocyclic N-methyliminodiacetic acid boronates can be readily prepared from the corresponding bromides via a new method involving direct transligation of 2-heterocyclic trialkoxyborate salts with N-methyliminodiacetic acid (MIDA) at elevated temperatures.


Asunto(s)
Ácidos Borónicos/síntesis química , Compuestos Heterocíclicos/síntesis química , Iminoácidos/síntesis química , Ácidos Borónicos/química , Cristalografía por Rayos X , Compuestos Heterocíclicos/química , Iminoácidos/química , Modelos Moleculares , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA