Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Conserv Biol ; 38(3): e14231, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38111980

RESUMEN

Deserts are often highly biodiverse and provide important habitats for many threatened species. Fire is a dominant disturbance in deserts, and prescribed burning is increasingly being used by conservation managers and Indigenous peoples to mitigate the damaging effects of climate change, invasive plants, and land-use change. The size, severity, and patchiness of fires can affect how animals respond to fire. However, there are almost no studies examining such burn characteristics in desert environments, which precludes the use of such information in conservation planning. Using a before-after control-impact approach with 20 sampling sites, we studied the outcomes of 10 prescribed burns of varying size (5-267 ha), severity, and patchiness to identify which variables best predicted changes in small mammal and reptile species richness and abundance. Three of the 13 species showed a clear response to fire. Captures increased for 2 species (1 mammal, 1 reptile) and decreased for 1 species (a reptile) as the proportional area burned around traps increased. Two other mammal species showed weaker positive responses to fire. Total burn size and burn patchiness were not influential predictors for any species. Changes in capture rates occurred only at sites with the largest and most severe burns. No fire-related changes in capture rates were observed where fires were small and very patchy. Our results suggest that there may be thresholds of fire size or fire severity that trigger responses to fire, which has consequences for management programs underpinned by the patch mosaic burning paradigm. The prescribed burns we studied, which are typical in scale and intensity across many desert regions, facilitated the presence of some taxa and are unlikely to have widespread or persistent negative impacts on small mammal or reptile communities in this ecosystem provided that long unburned habitat harboring threatened species is protected.


Prueba experimental de la respuesta animal al tamaño y gravedad de los incendios controlados Resumen Los desiertos suelen contar con mucha biodiversidad y proporcionar hábitats importantes para una variedad de especies amenazadas. El fuego es una perturbación que domina en los desiertos, y los incendios controlados cada vez se usan más por los gestores de la conservación y los pueblos indígenas para mitigar los efectos dañinos del cambio climático, las plantas invasoras y el cambio de uso de suelo. El tamaño, gravedad y fragmentación de los incendios pueden afectar cómo los animales responden al fuego. Sin embargo, casi no existen estudios que analicen dichas características de la quema en los ambientes desérticos, lo que excluye a dicha información de la planeación de la conservación. Usamos una estrategia de antes­después del control­impacto en 20 sitios de muestreo para estudiar los resultados de diez incendios controlados de diferentes tamaños (5­267 ha), gravedad y fragmentación para identificar cuáles variables pronostican mejor los cambios en la riqueza de especies y abundancia de mamíferos pequeños y reptiles. Tres de las 13 especies mostraron una respuesta clara al incendio. Las capturas incrementaron en dos especies (una de mamífero y una de reptil) y disminuyeron en una especie (un reptil) conforme incrementó el área proporcional incendiada alrededor de las trampas. Otras dos especies de mamíferos mostraron respuestas positivas más débiles ante el fuego. El tamaño total y la fragmentación del incendio no fueron influyentes sobre los pronosticadores de cualquier especie. Los cambios en las tasas de captura ocurrieron solamente en los sitios con los incendios más graves y grandes. No observamos cambios relacionados al incendio en las tasas de captura en donde los incendios fueron pequeños y muy fragmentados. Nuestros resultados sugieren que podría haber umbrales del tamaño o gravedad del incendio que provocan las respuestas al fuego, lo que tiene consecuencias para los programas de manejo sustentados en el paradigma del mosaico de fragmentos del incendio. Los incendios controlados que estudiamos, que son típicos en escala e intensidad en muchas regiones desérticas, facilitaron la presencia de algunos taxones y no tuvieron probabilidad de tener un impacto negativo extenso o persistente sobre las comunidades de mamíferos pequeños y reptiles en este ecosistema, siempre y cuando se proteja el hábitat que lleva mucho tiempo sin incendios y en donde viven las especies amenazadas.


Asunto(s)
Conservación de los Recursos Naturales , Incendios , Mamíferos , Reptiles , Animales , Conservación de los Recursos Naturales/métodos , Mamíferos/fisiología , Reptiles/fisiología , Clima Desértico , Biodiversidad , Ecosistema
2.
Mol Ecol ; 32(24): 6766-6776, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37873908

RESUMEN

In episodic environments like deserts, populations of some animal species exhibit irregular fluctuations such that populations are alternately large and connected or small and isolated. Such dynamics are typically driven by periodic resource pulses due, for example, to large but infrequent rainfall events. The repeated population bottlenecks resulting from fragmentation should lower genetic diversity over time, yet species undergoing these fluctuations appear to maintain high levels of genetic diversity. To resolve this apparent paradox, we simulated a metapopulation of constant size undergoing repeat episodes of fragmentation and change in gene flow to mimic outcomes experienced by mammals in an Australian desert. We show that episodic fragmentation and gene flow have contrasting effects on two measures of genetic diversity: heterozygosity and allelic richness. Specifically, fragmentation into many, small subpopulations, coupled with periods of infrequent gene flow, preserves allelic richness at the expense of heterozygosity. In contrast, fragmentation into a few, large subpopulations maintains heterozygosity at the expense of allelic richness. The strength of the trade-off between heterozygosity and allelic richness depends on the amount of gene flow and the frequency of gene flow events. Our results imply that the type of genetic diversity maintained among species living in strongly fluctuating environments will depend on the way populations fragment, with our results highlighting different mechanisms for maintaining allelic richness and heterozygosity in small, fragmented populations.


Asunto(s)
Flujo Génico , Variación Genética , Animales , Australia , Heterocigoto , Genética de Población , Mamíferos
3.
Glob Chang Biol ; 28(6): 2053-2065, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34989061

RESUMEN

Earth's rapidly warming climate is propelling us towards an increasingly fire-prone future. Currently, knowledge of the extent and characteristics of animal mortality rates during fire remains rudimentary, hindering our ability to predict how animal populations may be impacted in the future. To address this knowledge gap, we conducted a global systematic review of the direct effects of fire on animal mortality rates, based on studies that unequivocally determined the fate of animals during fire. From 31 studies spanning 1984-2020, we extracted data on the direct impacts of fire on the mortality of 31 species from 23 families. From these studies, there were 43 instances where direct effects were measured by reporting animal survival from pre- to post-fire. Most studies were conducted in North America (52%) and Oceania (42%), focused largely on mammals (53%) and reptiles (30%), and reported mostly on animal survival in planned (82%) and/or low severity (70%) fires. We found no studies from Asia, Europe or South America. Although there were insufficient data to conduct a formal meta-analysis, we tested the effect of fire type, fire severity, fire regime, animal body mass, ecological attributes and class on survival. Only fire severity affected animal mortality, with a higher proportion of animals being killed by high than low severity fires. Recent catastrophic fires across the globe have drawn attention to the plight of animals exposed to wildfire. Yet, our systematic review suggests that a relatively low proportion of animals (mean predicted mortality [95% CI] = 3% [1%-9%]) are killed during fire. However, our review also underscores how little we currently know about the direct effects of fire on animal mortality, and highlights the critical need to understand the effects of high severity fire on animal populations.


Asunto(s)
Incendios , Incendios Forestales , Animales , Clima , Ecosistema , Europa (Continente) , Humanos , Mamíferos
4.
Biol Lett ; 18(9): 20220314, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36102012

RESUMEN

Under the Ecosystem Exploitation Hypothesis ecosystem productivity predicts trophic complexity, but it is unclear if spatial and temporal drivers of productivity have similar impacts. Long-term studies are necessary to capture temporal impacts on trophic structure in variable ecosystems such as deserts. We sampled ants and measured plant resources in the Simpson Desert, central Australia over a 22-year period, during which rainfall varied 10-fold. We sampled dune swales (higher nutrient) and crests (lower nutrient) to account for spatial variation in productivity. We asked how temporal and spatial variation in productivity affects the abundance of ant trophic guilds. Precipitation increased vegetation cover, with the difference more pronounced on dune crests; seeding and flowering also increased with precipitation. Generalist activity increased over time, irrespective of productivity. Predators were more active in more productive (swale) habitat, i.e. spatial impacts of productivity were greatest at the highest trophic level. By contrast, herbivores (seed harvesters and sugar feeders) increased with long-term rainfall; seed harvesters also increased as seeding increased. Temporal impacts of productivity were therefore greatest for low trophic levels. Whether productivity variation leads to top-down or bottom-up structured ecosystems thus depends on the scale and dimension (spatial or temporal) of productivity.


Asunto(s)
Hormigas , Animales , Ecosistema , Herbivoria , Estudios Longitudinales , Plantas
5.
Glob Chang Biol ; 26(8): 4572-4582, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32520438

RESUMEN

Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.


Asunto(s)
Ecosistema , Pradera , Carbono , Nitrógeno/análisis , Nutrientes , Suelo
6.
J Anim Ecol ; 88(10): 1549-1563, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31310340

RESUMEN

Productivity is a key driver of ecosystem structure and function, so long-term studies are critical to understanding ecosystems with high temporal variation in productivity. In some deserts, productivity, driven by moisture availability, varies immensely over time (rainfall) and space (landscape factors). At high productivity, species richness is expected to be driven in opposing directions by abundance (More Individuals Hypothesis - MIH) and competition. While studies investigating the impacts of spatial variation in productivity on community structure are common, the impacts of temporal variability on productivity are poorly understood. We tested how well rainfall predicted the activity, species numbers and assemblage composition of ants and if responses were moderated by landscape position. We also asked whether the number of species (richness per sampling unit and estimated species richness) responded directly to rainfall or was moderated by ant activity or competition from dominant ants. Over a 22-year period, when annual rainfall fluctuated between 79 mm and 570 mm, we sampled ants using pitfall traps in paired dune and swale habitats in the Simpson Desert, Australia. We used climate records over this period to model changes in ant assemblages. Activity of dominant ants responded primarily to long-term rainfall, increasing exponentially, while subordinate ants responded to short-term weather and time. Consistent with the MIH, the number of ant species was best predicted by activity, particularly that of subordinate ants. Activity of dominant ants had a declining positive effect on numbers of species. Landscape position strongly predicted species composition, while long-term rainfall determined composition at genus level but not species level. Over time, species composition fluctuated, but several genera consistently increased in activity. Productivity moderators such as long-term rainfall and landscape position are key drivers of ant activity and composition in the study ecosystem, acting indirectly on numbers of species. Numbers of species were explained largely by ant activity, making a strong case for the MIH, but not competition. Longer periods of low rainfall may indirectly reduce species richness in desert ecosystems. However, a trend to increasing richness over time may indicate that conservation management can ameliorate this impact.


Asunto(s)
Hormigas , Animales , Australia , Clima , Ecosistema , Tiempo (Meteorología)
7.
Proc Natl Acad Sci U S A ; 113(40): 11261-11265, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27638204

RESUMEN

Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.


Asunto(s)
Biodiversidad , Internacionalidad , Especies Introducidas , Conducta Predatoria/fisiología , Animales , Evolución Biológica , Aves , Especies en Peligro de Extinción , Geografía , Mamíferos , Modelos Biológicos , Reptiles , Especificidad de la Especie
8.
Conserv Biol ; 32(1): 26-34, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28556528

RESUMEN

Large carnivores are persecuted globally because they threaten human industries and livelihoods. How this conflict is managed has consequences for the conservation of large carnivores and biodiversity more broadly. Mitigating human-predator conflict should be evidence-based and accommodate people's values while protecting carnivores. Despite much research into human and large-carnivore coexistence strategies, there have been few attempts to document the success of conflict-mitigation strategies on a global scale. We conducted a meta-analysis of global research on conflict mitigation related to large carnivores and humans. We focused on conflicts that arise from the threat large carnivores pose to livestock. We first used structured and unstructured searching to identify replicated studies that used before-after or control-impact design to measure change in livestock loss as a result of implementing a management intervention. We then extracted relevant data from these studies to calculate an overall effect size for each intervention type. Research effort and focus varied among continents and aligned with the histories and cultures that shaped livestock production and attitudes toward carnivores. Livestock guardian animals most effectively reduced livestock losses. Lethal control was the second most effective control, although its success varied the most, and guardian animals and lethal control did not differ significantly. Financial incentives have promoted tolerance of large carnivores in some settings and reduced retaliatory killings. We suggest coexistence strategies be location-specific, incorporate cultural values and environmental conditions, and be designed such that return on financial investment can be evaluated. Improved monitoring of mitigation measures is urgently required to promote effective evidence-based policy.


Asunto(s)
Carnívoros , Ganado , Animales , Actitud , Conservación de los Recursos Naturales , Humanos , Conducta Predatoria
9.
Conserv Biol ; 31(5): 1183-1191, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186361

RESUMEN

A prevailing view in dryland systems is that mammals are constrained by the scarcity of fertile soils and primary productivity. An alternative view is that predation is a primary driver of mammal assemblages, especially in Australia, where 2 introduced mesopredators-feral cat (Felis catus) and red fox (Vulpes vulpes)-are responsible for severe declines of dryland mammals. We evaluated productivity and predation as drivers of native mammal assemblage structure in dryland Australia. We used new data from 90 sites to examine the divers of extant mammal species richness and reconstructed historic mammal assemblages to determine proportional loss of mammal species across broad habitat types (landform and vegetation communities). Predation was supported as a major driver of extant mammal richness, but its effect was strongly mediated by habitat. Areas that were rugged or had dense grass cover supported more mammal species than the more productive and topographically simple areas. Twelve species in the critical weight range (CWR) (35-5500 g) that is most vulnerable to mesopredator predation were extirpated from the continent's central region, and the severity of loss of species correlated negatively with ruggedness and positively with productivity. Based on previous studies, we expect that habitat mediates predation from red foxes and feral cats because it affects these species' densities and foraging efficiency. Large areas of rugged terrain provided vital refuge for Australian dryland mammals, and we predict such areas will support the persistence of CWR species in the face of ongoing mammal declines elsewhere in Australia.


Asunto(s)
Conservación de los Recursos Naturales , Zorros , Mamíferos , Animales , Australia , Gatos , Ecosistema , Conducta Predatoria
10.
Oecologia ; 182(2): 475-85, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27337964

RESUMEN

Resources are seldom distributed equally across space, but many species exhibit spatially synchronous population dynamics. Such synchrony suggests the operation of large-scale external drivers, such as rainfall or wildfire, or the influence of oasis sites that provide water, shelter, or other resources. However, testing the generality of these factors is not easy, especially in variable environments. Using a long-term dataset (13-22 years) from a large (8000 km(2)) study region in arid Central Australia, we tested firstly for regional synchrony in annual rainfall and the dynamics of six reptile species across nine widely separated sites. For species that showed synchronous spatial dynamics, we then used multivariate follow a multivariate auto-regressive state-space (MARSS) models to predict that regional rainfall would be positively associated with their populations. For asynchronous species, we used MARSS models to explore four other possible population structures: (1) populations were asynchronous, (2) differed between oasis and non-oasis sites, (3) differed between burnt and unburnt sites, or (4) differed between three sub-regions with different rainfall gradients. Only one species showed evidence of spatial population synchrony and our results provide little evidence that rainfall synchronizes reptile populations. The oasis or the wildfire hypotheses were the best-fitting models for the other five species. Thus, our six study species appear generally to be structured in space into one or two populations across the study region. Our findings suggest that for arid-dwelling reptile populations, spatial and temporal dynamics are structured by abiotic events, but individual responses to covariates at smaller spatial scales are complex and poorly understood.


Asunto(s)
Ambiente , Dinámica Poblacional , Reptiles , Animales , Australia
11.
Front Zool ; 11(1): 17, 2014 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-24558973

RESUMEN

There has been much recent debate in Australia over whether lethal control of dingoes incurs environmental costs, particularly by allowing increase of populations of mesopredators such as red foxes and feral cats. Allen et al. (2013) claim to show in their recent study that suppression of dingo activity by poison baiting does not lead to mesopredator release, because mesopredators are also suppressed by poisoning. We show that this claim is not supported by the data and analysis reported in Allen et al.'s paper.

12.
Ecol Appl ; 24(8): 2013-28, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-29185669

RESUMEN

Biodiversity conservation in rangeland environments is often addressed by removing livestock, but inconsistent responses by biota mean that the efficacy of this form of management is hotly debated. Reasons for this inconsistency include the usually short duration and small spatial scale of manipulations compared to the area of grazing properties, as well as divergent responses amongst biota. In low-productivity arid environments, the pulse-reserve dynamic also complicates the outcome of manipulations. Here, we tested and extended these ideas in a heterogeneous desert environment in central Australia that consists of small patches of open woodland (gidgee) in a grassland (spinifex) matrix. Taking advantage of a controlled property-scale removal of cattle, and a rain event that stimulated productivity, we first quantified differences in the vegetation and small vertebrates of these two habitats, and then tracked the diversity, composition, and abundance of these biota for 6­19 months post-rain. We predicted that the two habitats would differ in the structure, composition, and reproductive output of their constituent plant species. We predicted also that the effects of cattle removal would interact with these habitat differences, with the abundance, richness, and diversity of small mammals and reptiles differing across habitats and grazing treatments. As anticipated, plant species composition in woodland was distinct from that in grassland and varied over time. The effects of cattle removal were habitat specific: Plant composition responded to de-stocking in woodland, but not in grassland; flowers were more abundant, and palatable plant cover also was greater following cessation of grazing pressure. The responses of small mammals but not reptiles showed some accord with our predictions, varying over time but inconsistently with treatment, and perhaps reflected high variability in capture success. We conclude that the timing and length of sampling are important when evaluating the responses of biota to livestock removal, as is the inclusion of all key habitats in the sampling regime.


Asunto(s)
Biodiversidad , Restauración y Remediación Ambiental , Bosques , Pradera , Lluvia , Crianza de Animales Domésticos , Animales , Australia , Conservación de los Recursos Naturales/métodos , Ambiente , Monitoreo del Ambiente , Mamíferos/clasificación , Plantas/clasificación , Reptiles/clasificación
13.
Oecologia ; 175(4): 1349-58, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24908053

RESUMEN

Top predators are declining globally, in turn allowing populations of smaller predators, or mesopredators, to increase and potentially have negative effects on biodiversity. However, detection of interactions among sympatric predators can be complicated by fluctuations in the background availability of resources in the environment, which may modify both the numbers of predators and the strengths of their interactions. Here, we first present a conceptual framework that predicts how top-down and bottom-up interactions may regulate sympatric predator populations in environments that experience resource pulses. We then test it using 2 years of remote-camera trapping data to uncover spatial and temporal interactions between a top predator, the dingo Canis dingo, and the mesopredatory European red fox Vulpes vulpes and feral cat Felis catus, during population booms, declines and busts in numbers of their prey in a model desert system. We found that dingoes predictably suppress abundances of the mesopredators and that the effects are strongest during declines and busts in prey numbers. Given that resource pulses are usually driven by large yet infrequent rains, we conclude that top predators like the dingo provide net benefits to prey populations by suppressing mesopredators during prolonged bust periods when prey populations are low and potentially vulnerable.


Asunto(s)
Animales Salvajes , Conducta Predatoria , Animales , Biodiversidad , Gatos , Bovinos , Perros , Ambiente , Cadena Alimentaria , Zorros , Modelos Teóricos , Dinámica Poblacional
14.
Glob Chang Biol ; 19(12): 3677-87, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038796

RESUMEN

Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.


Asunto(s)
Ecosistema , Especies Introducidas , Dispersión de las Plantas , Poaceae/fisiología , Biodiversidad
15.
J Anim Ecol ; 82(5): 927-36, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23560951

RESUMEN

1. The relative importance of food supply and predation as determinants of animal population density is a topic of enduring debate among ecologists. To address it, many studies have tested the potential effects of food on population density by experimentally supplementing natural populations, with much focus on terrestrial vertebrates, especially small mammals. 2. Here we perform a meta-analysis of such experiments, testing two complementary hypotheses: (i) small mammal populations are bottom-up limited and (ii) population increases in response to food supplementation are constrained by predation, a top-down limitation. 3. In the 148 experiments recorded, food supplementation had an overall positive and significant effect, increasing population densities by 1.5-fold. Larger population increases occurred when predation was reduced and populations were open to immigration. Predation appeared to be unimportant when populations were closed to immigration. Immigration was the major mechanism underlying increases in abundance by increasing local population density and crowding. Contributions of increased reproductive rate could be detected, but were minor compared to immigration, and no effects were detected from survival. 4. Our analyses support the view that animal population density is determined by both bottom-up and top-down forces. They also suggest the possibility that food supplementation experiments might unintentionally create ecological traps by aggregating both prey and predators in small areas of the landscape. We suggest an alternative experimental design to increase the contribution that food supplementation experiments can make in future.


Asunto(s)
Conducta Alimentaria/fisiología , Herbivoria/fisiología , Mamíferos/fisiología , Dinámica Poblacional/tendencias , Migración Animal , Animales , Peso Corporal/fisiología , Cadena Alimentaria , Mortalidad , Densidad de Población , Proyectos de Investigación
16.
Oecologia ; 171(2): 367-77, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22865005

RESUMEN

It is widely accepted that predator recognition and avoidance are important behaviors in allowing prey to mitigate the impacts of their predators. However, while prey species generally develop anti-predator behaviors through coevolution with predators, they sometimes show accelerated adoption of these behaviors under strong selection pressure from novel species. We used a field manipulation experiment to gauge the ability of the common ringtail possum (Pseudocheirus peregrinus), a semi-arboreal Australian marsupial, to recognize and respond to olfactory cues of different predator archetypes. We predicted that ringtails would display stronger anti-predator behaviors to cues of the invasive European red fox (Vulpes vulpes) in areas where fox impacts had been greatest, and to cues of the native lace monitor (Varanus varius) in areas of sympatry compared with allopatry. We found that ringtails fled quickly and were more alert when exposed to the fecal odors of both predators compared to neutral and pungent control odors, confirming that predator odors are recognized and avoided. However, these aversive responses were similar irrespective of predator presence or level of impact. These results suggest that selection pressure from the fox has been sufficient for ringtails to develop anti-predator behaviors over the few generations since foxes have become established. In contrast, we speculate that aversive responses by ringtails to the lace monitor in areas where this predator is absent reflect recent coexistence of the two species. We conclude that rapid evolution of anti-predator behaviors may occur when selection is strong. The maintenance of these behaviors should allow re-establishment of predator-prey relationships if the interactants regain sympatry via range shifts or management actions to reintroduce them to their former ranges.


Asunto(s)
Conducta Animal , Cadena Alimentaria , Zarigüeyas , Olfato , Distribución Animal , Animales , Señales (Psicología) , Zorros , Odorantes
17.
PLoS One ; 18(11): e0292919, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38032980

RESUMEN

Co-occurring species often overlap in their use of resources and can interact in complex ways. However, shifts in environmental conditions or resource availability can lead to changes in patterns of species co-occurrence, which may be exacerbated by global escalation of human disturbances to ecosystems, including conservation-directed interventions. We investigated the relative abundance and co-occurrence of two naturally sympatric mammal species following two forms of environmental disturbance: wildfire and introduced predator control. Using 14 years of abundance data from repeat surveys at long-term monitoring sites in south-eastern Australia, we examined the association between a marsupial, the common brushtail possum Trichosurus vulpecula, and a co-occurring native rodent, the bush rat Rattus fuscipes. We asked: In a fox-controlled environment, are the abundances of common brushtail possums and bush rats affected by environmental disturbance and each other's presence? Using Bayesian regression models, we tested hypotheses that the abundance of each species would vary with changes in environmental and disturbance variables, and that the negative association between bush rats and common brushtail possums was stronger than the association between bush rats and disturbance. Our analyses revealed that bush rat abundance varied greatly in relation to environmental and disturbance variables, whereas common brushtail possums showed relatively limited variation in response to the same variables. There was a negative association between common brushtail possums and bush rats, but this association was weaker than the initial decline and subsequent recovery of bush rats in response to wildfires. Using co-occurrence analysis, we can infer negative relationships in abundance between co-occurring species, but to understand the impacts of such associations, and plan appropriate conservation measures, we require more information on interactions between the species and environmental variables. Co-occurrence can be a powerful and novel method to diagnose threats to communities and understand changes in ecosystem dynamics.


Asunto(s)
Marsupiales , Trichosurus , Animales , Humanos , Ratas , Ecosistema , Teorema de Bayes
18.
Nat Commun ; 14(1): 1809, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002217

RESUMEN

Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.


Asunto(s)
Ecosistema , Pradera , Biomasa , Biodiversidad , Reproducibilidad de los Resultados , Plantas
19.
R Soc Open Sci ; 9(10): 220792, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36312571

RESUMEN

Introduction of the domestic cat and red fox has devastated Australian native fauna. We synthesized Australian diet analyses to identify traits of prey species in cat, fox and dingo diets, which prey were more frequent or distinctive to the diet of each predator, and quantified dietary overlap. Nearly half (45%) of all Australian terrestrial mammal, bird and reptile species occurred in the diets of one or more predators. Cat and dingo diets overlapped least (0.64 ± 0.27, n = 24 location/time points) and cat diet changed little over 55 years of study. Cats were more likely to have eaten birds, reptiles and small mammals than foxes or dingoes. Dingo diet remained constant over 53 years and constituted the largest mammal, bird and reptile prey species, including more macropods/potoroids, wombats, monotremes and bandicoots/bilbies than cats or foxes. Fox diet had greater overlap with both cats (0.79 ± 0.20, n = 37) and dingoes (0.73 ± 0.21, n = 42), fewer distinctive items (plant material, possums/gliders) and significant spatial and temporal heterogeneity over 69 years, suggesting the opportunity for prey switching (especially of mammal prey) to mitigate competition. Our study reinforced concerns about mesopredator impacts upon scarce/threatened species and the need to control foxes and cats for fauna conservation. However, extensive dietary overlap and opportunism, as well as low incidence of mesopredators in dingo diets, precluded resolution of the debate about possible dingo suppression of foxes and cats.

20.
Biol Rev Camb Philos Soc ; 97(4): 1539-1558, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35320881

RESUMEN

Both fire and predators have strong influences on the population dynamics and behaviour of animals, and the effects of predators may either be strengthened or weakened by fire. However, knowledge of how fire drives or mediates predator-prey interactions is fragmented and has not been synthesised. Here, we review and synthesise knowledge of how fire influences predator and prey behaviour and interactions. We develop a conceptual model based on predator-prey theory and empirical examples to address four key questions: (i) how and why do predators respond to fire; (ii) how and why does prey vulnerability change post-fire; (iii) what mechanisms do prey use to reduce predation risk post-fire; and (iv) what are the outcomes of predator-fire interactions for prey populations? We then discuss these findings in the context of wildlife conservation and ecosystem management before outlining priorities for future research. Fire-induced changes in vegetation structure, resource availability, and animal behaviour influence predator-prey encounter rates, the amount of time prey are vulnerable during an encounter, and the conditional probability of prey death given an encounter. How a predator responds to fire depends on fire characteristics (e.g. season, severity), their hunting behaviour (ambush or pursuit predator), movement behaviour, territoriality, and intra-guild dynamics. Prey species that rely on habitat structure for avoiding predation often experience increased predation rates and lower survival in recently burnt areas. By contrast, some prey species benefit from the opening up of habitat after fire because it makes it easier to detect predators and to modify their behaviour appropriately. Reduced prey body condition after fire can increase predation risk either through impaired ability to escape predators, or increased need to forage in risky areas due to being energetically stressed. To reduce risk of predation in the post-fire environment, prey may change their habitat use, increase sheltering behaviour, change their movement behaviour, or use camouflage through cryptic colouring and background matching. Field experiments and population viability modelling show instances where fire either amplifies or does not amplify the impacts of predators on prey populations, and vice versa. In some instances, intense and sustained post-fire predation may lead to local extinctions of prey populations. Human disruption of fire regimes is impacting faunal communities, with consequences for predator and prey behaviour and population dynamics. Key areas for future research include: capturing data continuously before, during and after fires; teasing out the relative importance of changes in visibility and shelter availability in different contexts; documenting changes in acoustic and olfactory cues for both predators and prey; addressing taxonomic and geographic biases in the literature; and predicting and testing how changes in fire-regime characteristics reshape predator-prey interactions. Understanding and managing the consequences for predator-prey communities will be critical for effective ecosystem management and species conservation in this era of global change.


Asunto(s)
Ecosistema , Cadena Alimentaria , Animales , Conducta Animal , Dinámica Poblacional , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA