Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Cell Environ ; 44(12): 3623-3635, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34506038

RESUMEN

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and -45% precipitation in a field experiment with mature piñon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q10 of 1.6 for piñon and 2.6 for juniper. Piñon foliar R did not respond to the +4.8°C temperatures, but R increased 1.4× for juniper. Across treatments, piñon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than piñon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than piñon. Species responses will be critical in ecosystem response to a warmer climate.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Sequías , Calor , Juniperus/fisiología , Fotosíntesis , Pinus/fisiología , Hojas de la Planta/fisiología , Juniperus/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo
2.
Oecologia ; 197(4): 921-938, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34657177

RESUMEN

Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from mature piñon pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~ 85% and 35% increases in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fructose measured 1-month prior explained ~ 45% and 60% of the variation in woody tissue total monoterpene concentrations. Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense.


Asunto(s)
Escarabajos , Pinus , Animales , Sequías , Calor , Asignación de Recursos , Árboles
3.
Plant Cell Environ ; 42(5): 1705-1714, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30537216

RESUMEN

Nonstructural carbohydrates (NSCs) are essential for maintenance of plant metabolism and may be sensitive to short- and long-term climatic variation. NSC variation in moist tropical forests has rarely been studied, so regulation of NSCs in these systems is poorly understood. We measured foliar and branch NSC content in 23 tree species at three sites located across a large precipitation gradient in Panama during the 2015-2016 El Niño to examine how short- and long-term climatic variation impact carbohydrate dynamics. There was no significant difference in total NSCs as the drought progressed (leaf P = 0.32, branch P = 0.30) nor across the rainfall gradient (leaf P = 0.91, branch P = 0.96). Foliar soluble sugars decreased while starch increased over the duration of the dry period, suggesting greater partitioning of NSCs to storage than metabolism or transport as drought progressed. There was a large variation across species at all sites, but total foliar NSCs were positively correlated with leaf mass per area, whereas branch sugars were positively related to leaf temperature and negatively correlated with daily photosynthesis and wood density. The NSC homoeostasis across a wide range of conditions suggests that NSCs are an allocation priority in moist tropical forests.


Asunto(s)
Sequías , El Niño Oscilación del Sur , Almidón/metabolismo , Azúcares/metabolismo , Árboles/metabolismo , Carbohidratos/fisiología , Bosques , Panamá , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Estaciones del Año , Clima Tropical , Madera/metabolismo
4.
Plant Cell Environ ; 41(8): 1926-1934, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29761501

RESUMEN

We investigated stem radial growth and water storage dynamics of 2 conifer species differing in hydraulic carbon strategies, Juniperus monosperma and Pinus edulis, under conditions of ambient, drought (∼45% reduction in precipitation), heat (∼4.8 °C temperature increase), and the combination of drought + heat, in 2013 and 2014. Juniper maintained low growth across all treatments. Overall, the relatively isohydric piñon pine showed significantly greater growth and water storage recharge than the relatively anisohydric juniper across all treatments in the average climate year (2014) but no differences in the regionally dry year (2013). Piñon pine ceased growth at a constant predawn water potential across all treatments and at a less negative water potential threshold than juniper. Heat has a greater negative impact on piñon pines' growth and water storage than drought, whereas juniper was, in contrast, unaffected by heat but strongly impacted by drought. The whole-plant hydraulic carbon strategies, in this case captured using the isohydric/anisohydric concept, translate into alternative growth and water storage strategies under drought and heat conditions.


Asunto(s)
Juniperus/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Deshidratación , Respuesta al Choque Térmico , Juniperus/metabolismo , Juniperus/fisiología , Pinus/metabolismo , Pinus/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Agua/metabolismo
5.
Plant Cell Environ ; 41(11): 2627-2637, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29974965

RESUMEN

Climate warming should result in hotter droughts of unprecedented severity in this century. Such droughts have been linked with massive tree mortality, and data suggest that warming interacts with drought to aggravate plant performance. Yet how forests will respond to hotter droughts remains unclear, as does the suite of mechanisms trees use to deal with hot droughts. We used an ecosystem-scale manipulation of precipitation and temperature on piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees to investigate nitrogen (N) cycling-induced mitigation processes related to hotter droughts. We found that while negative impacts on plant carbon and water balance are manifest after prolonged drought, performance reductions were not amplified by warmer temperatures. Rather, increased temperatures for 5 years stimulated soil N cycling under piñon trees and modified tree N allocation for both species, resulting in mitigation of hotter drought impacts on tree water and carbon functions. These findings suggest that adjustments in N cycling are likely after multi-year warming conditions and that such changes may buffer reductions in tree performance during hotter droughts. The results highlight our incomplete understanding of trees' ability to acclimate to climate change, raising fundamental questions about the resistance potential of forests to long-term, compound climatic stresses.


Asunto(s)
Ciclo del Nitrógeno , Árboles/fisiología , Carbono/metabolismo , Deshidratación , Sequías , Calor , Juniperus/metabolismo , Juniperus/fisiología , Nitrógeno/metabolismo , Ciclo del Nitrógeno/fisiología , Pinus/metabolismo , Pinus/fisiología , Árboles/metabolismo
6.
New Phytol ; 213(2): 584-596, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27612306

RESUMEN

The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology.


Asunto(s)
Cambio Climático , Lluvia , Árboles/fisiología , Agua/fisiología , Deuterio/metabolismo , Marcaje Isotópico , Modelos Teóricos , Isótopos de Oxígeno/metabolismo , Estaciones del Año , Suelo/química , Especificidad de la Especie
7.
Plant Cell Environ ; 40(9): 1861-1873, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28556263

RESUMEN

Disentangling the relative impacts of precipitation reduction and vapour pressure deficit (VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density (FD ), stomatal conductance (Gs ), hydraulic conductivity (KL ) and xylem anatomy in piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced the sensibility of stomata to VPD for both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD , Gs and KL . Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs , FD and KL took place to similar levels as under single stresses for both species. Our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.


Asunto(s)
Calentamiento Global , Árboles/fisiología , Agua/fisiología , Desecación , Exudados de Plantas/metabolismo , Estomas de Plantas/fisiología , Estaciones del Año , Estrés Fisiológico , Árboles/crecimiento & desarrollo , Presión de Vapor , Madera/anatomía & histología
8.
Plant Cell Environ ; 39(1): 38-49, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26081870

RESUMEN

Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.


Asunto(s)
Carbono/metabolismo , Juniperus/fisiología , Pinus/fisiología , Transpiración de Plantas/fisiología , Sequías , Modelos Biológicos , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Árboles , Agua/fisiología , Xilema/fisiología
9.
Plant Cell Environ ; 38(4): 729-39, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25159277

RESUMEN

Drought-induced forest mortality is an increasing global problem with wide-ranging consequences, yet mortality mechanisms remain poorly understood. Depletion of non-structural carbohydrate (NSC) stores has been implicated as an important mechanism in drought-induced mortality, but experimental field tests are rare. We used an ecosystem-scale precipitation manipulation experiment to evaluate leaf and twig NSC dynamics of two co-occurring conifers that differ in patterns of stomatal regulation of water loss and recent mortality: the relatively desiccation-avoiding piñon pine (Pinus edulis) and the relatively desiccation-tolerant one-seed juniper (Juniperus monosperma). Piñon pine experienced 72% mortality after 13-25 months of experimental drought and juniper experienced 20% mortality after 32-47 months. Juniper maintained three times more NSC in the foliage than twigs, and converted NSC to glucose and fructose under drought, consistent with osmoregulation requirements to maintain higher stomatal conductance during drought than piñon. Despite these species differences, experimental drought caused decreased leaf starch content in dying trees of both species (P < 0.001). Average dry-season leaf starch content was also a good predictor of drought-survival time for both species (R(2) = 0.93). These results, along with observations of drought-induced reductions to photosynthesis and growth, support carbon limitation as an important process during mortality of these two conifer species.


Asunto(s)
Pinus/fisiología , Carbohidratos , Carbono , Sequías , Ecosistema , Bosques , Juniperus/fisiología , Modelos Biológicos , Fotosíntesis , Pinus/crecimiento & desarrollo , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Lluvia , Estaciones del Año , Suelo , Árboles/crecimiento & desarrollo , Agua/fisiología
10.
New Phytol ; 200(2): 304-321, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24004027

RESUMEN

SUMMARY: Model-data comparisons of plant physiological processes provide an understanding of mechanisms underlying vegetation responses to climate. We simulated the physiology of a piñon pine-juniper woodland (Pinus edulis-Juniperus monosperma) that experienced mortality during a 5 yr precipitation-reduction experiment, allowing a framework with which to examine our knowledge of drought-induced tree mortality. We used six models designed for scales ranging from individual plants to a global level, all containing state-of-the-art representations of the internal hydraulic and carbohydrate dynamics of woody plants. Despite the large range of model structures, tuning, and parameterization employed, all simulations predicted hydraulic failure and carbon starvation processes co-occurring in dying trees of both species, with the time spent with severe hydraulic failure and carbon starvation, rather than absolute thresholds per se, being a better predictor of impending mortality. Model and empirical data suggest that limited carbon and water exchanges at stomatal, phloem, and below-ground interfaces were associated with mortality of both species. The model-data comparison suggests that the introduction of a mechanistic process into physiology-based models provides equal or improved predictive power over traditional process-model or empirical thresholds. Both biophysical and empirical modeling approaches are useful in understanding processes, particularly when the models fail, because they reveal mechanisms that are likely to underlie mortality. We suggest that for some ecosystems, integration of mechanistic pathogen models into current vegetation models, and evaluation against observations, could result in a breakthrough capability to simulate vegetation dynamics.


Asunto(s)
Carbono/metabolismo , Juniperus/fisiología , Modelos Biológicos , Pinus/fisiología , Transpiración de Plantas/fisiología , Agua/fisiología , Sequías , Juniperus/crecimiento & desarrollo , Floema/crecimiento & desarrollo , Floema/fisiología , Pinus/crecimiento & desarrollo , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Lluvia , Estrés Fisiológico , Temperatura , Árboles
11.
Plant Cell Environ ; 36(10): 1812-25, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23461476

RESUMEN

Leaf gas-exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas-exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon-juniper Pinus edulis-Juniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (-45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas-exchange rates under well-watered conditions, leaf-specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade-off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA.


Asunto(s)
Aclimatación/fisiología , Gases/metabolismo , Juniperus/fisiología , Pinus/fisiología , Hojas de la Planta/fisiología , Lluvia , Carbono/metabolismo , Clima , Modelos Biológicos , New Mexico , Fotosíntesis/fisiología , Estomas de Plantas/fisiología , Estaciones del Año , Especificidad de la Especie , Agua
12.
Front Plant Sci ; 7: 564, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27200037

RESUMEN

Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA