RESUMEN
BACKGROUND: Hepatitis C virus (HCV) and hepatitis B virus (HBV) cause chronic hepatitis with important clinical differences. HCV causes hepatic steatosis and insulin resistance, while HBV confers increased risk of liver cancer. We hypothesised these differences may be due to virus-specific effects on mitochondrial function. METHODS: Seahorse technology was utilised to investigate effects of virus infection on mitochondrial function. Cell based assays were used to measure mitochondrial membrane potential and quantify pyruvate and lactate. Mass spectrometry was performed on mitochondria isolated from HBV expressing, HCV infected and control cells cultured with isotope-labelled amino acids, to identify proteins with different abundance. Altered expression of key mitochondrial proteins was confirmed by real time PCR and western blot. RESULTS: Reduced mitochondrial function and ATP production were observed with HCV infection and HBV expression. HCV impairs glycolysis and reduces expression of genes regulating fatty acid oxidation, promoting lipid accumulation. HBV causes lactate accumulation by increasing expression of lactate dehydrogenase A, which converts pyruvate to lactate. In HBV expressing cells there was marked enrichment of pyruvate dehydrogenase kinase, inhibiting conversion of pyruvate to acetyl-CoA and thereby reducing its availability for mitochondrial oxidative phosphorylation. CONCLUSIONS: HCV and HBV impair mitochondrial function and reduce ATP production. HCV reduces acetyl-CoA availability for energy production by impairing fatty acid oxidation, causing lipid accumulation and hepatic steatosis. HBV has no effect on fatty oxidation but reduces acetyl-CoA availability by disrupting pyruvate metabolism. This promotes lactic acidosis and oxidative stress, increasing the risk of disease progression and liver cancer.
RESUMEN
OBJECTIVE: To introduce a protocol for the characterization of protein patterns in tears of dogs with primary angle closure glaucoma (PACG) and primary open-angle glaucoma (POAG). ANIMALS: Nineteen dogs (25 eyes). METHODS: Tear samples were collected using a Schirmer tear strip, from dogs with PACG (PACG-affected eyes, n = 8; unaffected eyes predisposed to PACG, n = 7), POAG (n = 4), and healthy controls (n = 6). Protein precipitation and trypsin digestion were performed for analyses via liquid chromatography-tandem mass spectrometry. Proteins were identified using the SwissProt protein sequence database. Relative protein expression in 17 eyes (15 dogs) was evaluated using Proteome Discoverer 2.0. Pathway analyses were performed to investigate molecular mechanisms associated with primary glaucoma. RESULTS: Unique peptides were identified in 505 proteins, with Major allergen Can f 1 and albumin identified with high confidence. Proteins unique to tears from diseased eyes (PACG: n = 7; POAG: n = 14) were identified. Nucleoside diphosphate was unique to tears in PACG eyes naïve to therapy, while retinal binding protein and NSFL1 cofactor p47 were unique to medicated PACG eyes. Relative expression of 34 proteins differed between disease states. Pathway analyses identified that the 'inflammatory response' was among the top disease/disorders in dogs with primary glaucoma (PACG and POAG) but not in healthy controls. CONCLUSION: Tear samples suitable for mass spectrometry were readily obtained from pet dogs without needing specialized equipment. Further studies to validate the findings and explore potential candidate biomarkers for early disease detection and potential therapeutic targets are indicated.
Asunto(s)
Enfermedades de los Perros/metabolismo , Proteínas del Ojo/metabolismo , Glaucoma/veterinaria , Proteómica/métodos , Lágrimas/metabolismo , Animales , Biomarcadores/metabolismo , Cromatografía Liquida/veterinaria , Perros , Estudios de Factibilidad , Femenino , Glaucoma/metabolismo , Masculino , Espectrometría de Masas/veterinariaRESUMEN
A marine-derived compound, abalone hemocyanin, from Haliotis rubra was shown to have a unique mechanism of antiviral activity against herpes simplex virus 1 (HSV-1) infections. In vitro assays demonstrated the dose-dependent and inhibitory effect of purified hemocyanin against HSV-1 infection in Vero cells with a 50% effective dose (ED50) of 40 to 50 nM and no significant toxicity. In addition, hemocyanin specifically inhibited viral attachment and entry by binding selectively to the viral surface glycoproteins gD, gB, and gC, probably by mimicking their receptors. However, hemocyanin had no effect on postentry events and did not block infection by binding to cellular receptors for HSV. By the use of different mutants of gD and gB and a competitive heparin binding assay, both protein charge and conformation were shown to be the driving forces of the interaction between hemocyanin and viral glycoproteins. These findings also suggested that hemocyanin may have different motifs for binding to each of the viral glycoproteins B and D. The dimer subunit of hemocyanin with a 10-fold-smaller molecular mass exhibited similar binding to viral surface glycoproteins, showing that the observed inhibition did not require the entire multimer. Therefore, a small hemocyanin analogue could serve as a new antiviral candidate for HSV infections.
Asunto(s)
Antivirales/farmacología , Hemocianinas/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Animales , Sitios de Unión , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Gastrópodos/química , Glicoproteínas/metabolismo , Hemocianinas/aislamiento & purificación , Hemocianinas/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidad , Células Vero/efectos de los fármacos , Células Vero/virologíaRESUMEN
UNLABELLED: Dendritic cells (DCs) and macrophages are present in the tissues of the anogenital tract, where HIV-1 transmission occurs in almost all cases. These cells are both target cells for HIV-1 and represent the first opportunity for the virus to interfere with innate recognition. Previously we have shown that both cell types fail to produce type I interferons (IFNs) in response to HIV-1 but that, unlike T cells, the virus does not block IFN induction by targeting IFN regulatory factor 3 (IRF3) for cellular degradation. Thus, either HIV-1 inhibits IFN induction by an alternate mechanism or, less likely, these cells fail to sense HIV-1. Here we show that HIV-1 (but not herpes simplex virus 2 [HSV-2] or Sendai virus)-exposed DCs and macrophages fail to induce the expression of all known type I and III IFN genes. These cells do sense the virus, and pattern recognition receptor (PRR)-induced signaling pathways are triggered. The precise stage in the IFN-inducing signaling pathway that HIV-1 targets to block IFN induction was identified; phosphorylation but not K63 polyubiquitination of TANK-binding kinase 1 (TBK1) was completely inhibited. Two HIV-1 accessory proteins, Vpr and Vif, were shown to bind to TBK1, and their individual deletion partly restored IFN-ß expression. Thus, the inhibition of TBK1 autophosphorylation by binding of these proteins appears to be the principal mechanism by which HIV-1 blocks type I and III IFN induction in myeloid cells. IMPORTANCE: Dendritic cells (DCs) and macrophages are key HIV target cells. Therefore, definition of how HIV impairs innate immune responses to initially establish infection is essential to design preventative interventions, especially by restoring initial interferon production. Here we demonstrate how HIV-1 blocks interferon induction by inhibiting the function of a key kinase in the interferon signaling pathway, TBK1, via two different viral accessory proteins. Other viral proteins have been shown to target the general effects of TBK1, but this precise targeting between ubiquitination and phosphorylation of TBK1 is novel.
Asunto(s)
Células Dendríticas/inmunología , VIH-1/inmunología , Interacciones Huésped-Patógeno , Macrófagos/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Células Cultivadas , Células Dendríticas/virología , Humanos , Evasión Inmune , Interferones/antagonistas & inhibidores , Macrófagos/virología , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal , UbiquitinaciónRESUMEN
Polo-like kinase 1 (PLK1) is a regulator of cell mitosis and cytoskeletal dynamics. PLK1 overexpression in liver cancer is associated with tumour progression, metastasis, and vascular invasion. Hepatitis C virus (HCV) NS5A protein stimulates PLK1-mediated phosphorylation of host proteins, so we hypothesised that HCV-PLK1 interactions might be a mechanism for HCV-induced liver cancer. We used a HCV cell-culture model (Jc1) to investigate the effects of virus infection on the cytoskeleton. In HCV-infected cells, a novel posttranslational modification in ß-actin was observed with phosphorylation at Ser239. Using in silico and in vitro approaches, we identified PLK1 as the mediating kinase. In functional experiments with a phosphomimetic mutant form of ß-actin, Ser239 phosphorylation influences ß-actin polymerization and distribution, resulting in increased cell motility. The changes were prevented by treating cells with the PLK1 inhibitor volasertib. In HCV-infected hepatocytes, increased cell motility contributes to cancer cell migration, invasion, and metastasis. PLK1 is an important mediator of these effects and early treatment with PLK1 inhibitors may prevent or reduce HCC progression, particularly in people with HCV-induced HCC.
Asunto(s)
Carcinoma Hepatocelular , Hepatitis C , Neoplasias Hepáticas , Humanos , Hepacivirus , Actinas , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Movimiento Celular/genética , Quinasa Tipo Polo 1RESUMEN
The herpes simplex virus type 1 (HSV-1) structural tegument protein pUL37, which is conserved across the Herpesviridae family, is known to be essential for secondary envelopment during the egress of viral particles. To shed light on additional roles of pUL37 during viral replication a yeast two-hybrid screen of a human brain cDNA library was undertaken. This screen identified ten host cell proteins as potential pUL37 interactors. One of the interactors, serine threonine kinase TAOK3, was subsequently confirmed to interact with pUL37 using an in vitro pulldown assay. Such host cell/pUL37 interactions provide further insights into the multifunctional role of this herpesviral tegument protein.
Asunto(s)
Encéfalo/metabolismo , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Estructurales Virales/metabolismo , Encéfalo/virología , Biblioteca de Genes , Herpesvirus Humano 1/metabolismo , Humanos , Técnicas del Sistema de Dos Híbridos , Replicación ViralRESUMEN
BACKGROUND: CDKN2A/p16INK4a is frequently altered in human cancers and it is the most important melanoma susceptibility gene identified to date. p16INK4a inhibits pRb phosphorylation and induces cell cycle arrest, which is considered its main tumour suppressor function. Nevertheless, additional activities may contribute to the tumour suppressor role of p16INK4a and could help explain its specific association with melanoma predisposition. To identify such functions we conducted a yeast-two-hybrid screen for novel p16INK4a binding partners. RESULTS: We now report that p16INK4a interacts with the chromatin remodelling factor BRG1. We investigated the cooperative roles of p16INK4a and BRG1 using a panel of cell lines and a melanoma cell model with inducible p16INK4a expression and BRG1 silencing. We found evidence that BRG1 is not required for p16INK4a-induced cell cycle inhibition and propose that the p16INK4a-BRG1 complex regulates BRG1 chromatin remodelling activity. Importantly, we found frequent loss of BRG1 expression in primary and metastatic melanomas, implicating this novel p16INK4a binding partner as an important tumour suppressor in melanoma. CONCLUSION: This data adds to the increasing evidence implicating the SWI/SNF chromatin remodelling complex in tumour development and the association of p16INK4a with chromatin remodelling highlights potentially new functions that may be important in melanoma predisposition and chemoresistance.
Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Western Blotting , Ciclo Celular/genética , Línea Celular Tumoral , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , ADN Helicasas/fisiología , Humanos , Inmunohistoquímica , Inmunoprecipitación , Melanoma/metabolismo , Proteínas Nucleares/fisiología , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Técnicas del Sistema de Dos HíbridosRESUMEN
Core peptide is a hydrophobic peptide, the sequence of which is derived from the T-cell antigen receptor alpha-chain transmembrane region. Previous studies have shown that core peptide can inhibit T-cell-mediated immune responses both in vitro and in vivo. Here, we report the role each constituent amino acid plays within core peptide using an alanine scan and the amino acid effect on function using a biological antigen presentation assay. The biophysical behaviour of these analogues in model membranes was analysed using surface plasmon resonance studies and then binding correlated with T-cell function. Removal of any single hydrophobic amino acid between the two charged amino acids in core peptide (R, K) resulted in lower binding. Changing the overall net charge of core peptide, by removing either of the positively charged residues (R or K), had varying effects on peptide binding and IL-2 production. There was a direct correlation (ρ = 0.718) between peptide binding to model membranes and peptide ability to inhibit IL-2. Except for IL-2 inhibition, production of other T-cell cytokines such as GM-CSF, IFN-γ, IL-1α, IL-4, IL-5, IL-6, IL-10, IL-17 and T-cell antigen receptor alpha-chain was not detected using a fluorescent bead immunoassay. This study provides important structure-function relationships essential for further drug design.
Asunto(s)
Alanina/química , Inmunosupresores/química , Oligopéptidos/química , Fragmentos de Péptidos/química , Receptores de Antígenos de Linfocitos T alfa-beta/química , Secuencia de Aminoácidos , Animales , Presentación de Antígeno , Interacciones Hidrofóbicas e Hidrofílicas , Inmunosupresores/farmacología , Interleucina-2/antagonistas & inhibidores , Interleucina-2/biosíntesis , Membranas Artificiales , Ratones , Datos de Secuencia Molecular , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Estructura Secundaria de Proteína , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
Interferon beta (IFNbeta) is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS). However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS) treated with IFNbeta. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE) to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA) analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1alpha, between clinical responders and non-responders, despite the association of these proteins with IFNbeta treatment in MS.
Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Interferón beta/uso terapéutico , Esclerosis Múltiple/sangre , Esclerosis Múltiple/tratamiento farmacológico , Adulto , Biomarcadores/sangre , Quimiocina CCL11/sangre , Demografía , Femenino , Citometría de Flujo , Humanos , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Tamaño de la Muestra , Resultado del TratamientoRESUMEN
BACKGROUND: The pathogenesis of HIV-associated dementia (HAD) is poorly understood. To date, detailed proteomic fingerprinting directly from autopsied brain tissues of HAD and HIV non-dementia patients has not been performed. RESULT: Here, we have analyzed total proteins from the frontal cortex of 9 HAD and 5 HIV non-dementia patients. Using 2-Dimensional differential in-gel electrophoresis (2-DIGE) to analyze the brain tissue proteome, 76 differentially expressed proteins (p < 0.05; fold change>1.25) were identified between HAD and HIV non-dementia patients, of which 36 protein spots (based on 3D appearance of spots on the images) were chosen for the mass spectrometry analysis. The large majority of identified proteins were represented in the energy metabolic (mitochondria) and signal transduction pathways. Furthermore, over 90% of the protein candidates are common to both HAD and other non-viral neurodegenerative disease, such as Alzheimer's disease. The data was further validated using specific antibodies to 4 proteins (CA2, GS, CKMT and CRMP2) by western blot (WB) in the same samples used for 2D-DIGE, with additional confirmation by immunohistochemitsry (IHC) using frontal lobe tissue from different HAD and HIV+ non-dementia patients. The validation for all 4 antibodies by WB and IHC was in concordance with the DIGE results, lending further credence to the current findings. CONCLUSION: These results suggest not only convergent pathogenetic pathways for the two diseases but also the possibility of increased Alzheimer's disease (AD) susceptibility in HAD patients whose life expectancy has been significantly increased by highly active antiretroviral therapy.
RESUMEN
In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.
Asunto(s)
Herpesvirus Humano 1/fisiología , Mapeo de Interacción de Proteínas , Proteínas Estructurales Virales/metabolismo , Electroforesis en Gel de Poliacrilamida , Unión Proteica , Técnicas del Sistema de Dos HíbridosRESUMEN
The aim of this study was to elucidate protein-protein interactions between tegument proteins of herpes simplex virus type 1 (HSV-1). To do so, we have cloned and expressed in the LexA yeast (Saccharomyces cerevisiae) two-hybrid system, 13 of the 21 currently known tegument proteins of HSV-1. These included the tegument proteins essential for replication in cell lines, UL17, UL36, UL37, UL48, and UL49, and the nonessential tegument proteins US11, UL11, UL14, UL16, UL21, UL41, UL46, and UL47. A total of 104 combinations were screened in the yeast two-hybrid assay, with 9 interactions identified. These included: UL11-UL16, UL36-UL37, UL36-UL48, UL46-UL48, UL47-UL48, and UL48-UL49. The remaining interactions consisted of self-associations that were observed for US11, UL37, and UL49. The interactions UL36-UL37, UL36-UL48, UL37-UL37, UL46-UL48, and UL47-UL48 have not been previously reported for HSV-1. The interaction of UL46-UL48 was verified using an in vitro pull-down assay. The interactions of UL36-UL37 and UL37-UL37 were verified with a coimmunoprecipitation assay. Knowledge of HSV-1 tegument protein-protein interactions will provide insights into the pathways of tegument assembly, and the identified interactions are potential targets for new antiviral drugs.
Asunto(s)
Herpesvirus Humano 1/fisiología , Proteínas del Envoltorio Viral/metabolismo , Células HeLa , Herpesvirus Humano 1/metabolismo , Humanos , Unión Proteica , Técnicas del Sistema de Dos Híbridos , Ensamble de VirusRESUMEN
Recent studies on the conventional motor protein kinesin have identified a putative cargo-binding domain (residues 827-906) within the heavy chain. To identify possible cargo proteins which bind to this kinesin domain, we employed a yeast two-hybrid assay. A human brain cDNA library was screened, using as bait residues 814-963 of human ubiquitous kinesin heavy chain. This screen initially identified synaptosome-associated protein of 25 kDa (SNAP25) as a kinesin-binding protein. Subsequently, synaptosome-associated protein of 23 kDa (SNAP23), the nonneuronal homologue of SNAP25, was also confirmed to interact with kinesin. The sites of interaction, determined from in vivo and in vitro assays, are the N-terminus of SNAP25 (residues 1-84) and the cargo-binding domain of kinesin heavy chain (residues 814-907). Both regions are composed almost entirely of heptad repeats, suggesting the interaction between heavy chain and SNAP25 is that of a coiled-coil. The observation that SNAP23 also binds to residues 814-907 of heavy chain would indicate that the minimal kinesin-binding domain of SNAP23 and SNAP25 is most likely residues 45-84 (SNAP25 numbering), a heptad-repeat region in both proteins. The major binding site for kinesin light chain in kinesin heavy chain was mapped to residues 789-813 at the C-terminal end of the heavy chain stalk domain. Weak binding of light chain was also detected at the N-terminus of the heavy chain tail domain (residues 814-854). In support of separate binding sites on heavy chain for light chain and SNAPs, a complex of heavy and light chains was observed to interact with SNAP25 and SNAP23.
Asunto(s)
Proteínas Portadoras/metabolismo , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Química Encefálica/genética , Proteínas Portadoras/análisis , Proteínas Portadoras/genética , Vectores Genéticos/análisis , Vectores Genéticos/metabolismo , Humanos , Cinesinas/análisis , Cinesinas/genética , Proteínas de la Membrana/análisis , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/genética , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica/genética , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteína 25 Asociada a Sinaptosomas , Técnicas del Sistema de Dos HíbridosRESUMEN
This study examines the binding properties of a new class of immunomodulating peptides derived from the transmembrane region of the T cell antigen receptor, on model membranes using surface plasmon resonance. The di-basic "core" peptide was found to bind to both zwitterionic and anionic model membranes as well as to a T cell membrane preparation. By contrast, switching one or both of the basic residues to acidic residues led to a complete loss of binding to model membranes. In addition, the position of the charged amino acids in the sequence, the number of hydrophobic amino acids between the charged residues, and substitution of one or both basic to neutral amino acids were found to effect binding. These results when compared with in vitro T cell stimulation assays and in vivo adjuvant-induced arthritis models, showed very close correlation and confirmed the findings that amino acid charge and location may have a role in peptide activity. These initial biophysical peptide-membrane interactions are critically important and correlate well with the subsequent cellular expression and biological effect of these hydrophobic peptides. Targeting and understanding the biophysical interactions between peptides and membranes at their site of action is paramount to the description of cell function and drug design.
Asunto(s)
Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Resonancia por Plasmón de Superficie , Linfocitos T/ultraestructura , Secuencia de Aminoácidos , Membrana Celular/química , Membrana Celular/inmunología , Dimiristoilfosfatidilcolina/metabolismo , Electroquímica , Cinética , Liposomas/metabolismo , Proteínas de la Membrana/química , Péptidos/química , Péptidos/metabolismo , Fosfatidilgliceroles/metabolismo , Relación Estructura-ActividadRESUMEN
The conventional microtubule-dependent motor protein kinesin consists of heavy and light chains both of which have been documented to bind a variety of potential linker or cargo proteins. In this study we employed a yeast two-hybrid assay to identify additional binding partners of the kinesin heavy chain isoform KIF5B. A human brain cDNA library was screened with a bait corresponding to amino acid residues 814-963 of human KIF5B. This screen identified the ribosome receptor, p180, as a KIF5B-binding protein. The sites of interaction are residues 1294-1413 of p180 and the C-terminal half of the cargo binding-domain of KIF5B (residues 867-907). The KIF5B-binding site in p180 is homologous to the previously determined KIF5B-binding site in kinectin. The interacting regions of p180 and KIF5B consist almost entirely of heptad repeats, suggesting the interaction is a coiled-coil. A role for the kinesin/p180 interaction may include mRNA localization and/or transport of endoplasmic reticulum-derived vesicles.
Asunto(s)
Cinesinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Humanos , Cinesinas/química , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Técnicas del Sistema de Dos HíbridosRESUMEN
The p14(ARF) tumor suppressor is a key regulator of cellular proliferation and is frequently inactivated in human cancer. This tumor suppressor functions in the p53 and pRb cell cycle regulatory pathways and can effectively activate both pathways to induce growth arrest or cell death. We now report that p14(ARF) forms a complex with the E1A-regulated transcriptional repressor, p120(E4F). p120(E4F) contacts p14(ARF) and p53 to form a ternary complex in vivo and enhances p14(ARF)-induced G(2) cell cycle arrest in a p53-dependent manner. We suggest that the interaction of p14(ARF) and p120(E4F) forms an important link between the p14(ARF) and p53 tumor suppressor proteins, both of which exhibit enhanced cell cycle inhibitory activity in the presence of this transcriptional repressor.
Asunto(s)
Proteínas E4 de Adenovirus/genética , Ciclo Celular/genética , Proteínas Represoras/genética , Proteína p14ARF Supresora de Tumor/genética , Proteínas E4 de Adenovirus/metabolismo , Regulación de la Expresión Génica , Genes p16 , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas Represoras/metabolismo , Transcripción Genética , Células Tumorales Cultivadas , Proteína p14ARF Supresora de Tumor/metabolismo , Dedos de Zinc/genéticaRESUMEN
Little is known about the mechanisms of transport of neurotropic herpesviruses, such as herpes simplex virus (HSV), varicella-zoster virus, and pseudorabies virus, within neurons. For these viruses, which replicate in the nucleus, anterograde transport from the cell body of dorsal root ganglion (DRG) neurons to the axon terminus occurs over long distances. In the case of HSV, unenveloped nucleocapsids in human DRG neurons cocultured with autologous skin were observed by immunoelectron microscopy to colocalize with conventional ubiquitous kinesin, a microtubule-dependent motor protein, in the cell body and axon during anterograde axonal transport. Subsequently, four candidate kinesin-binding structural HSV proteins were identified (VP5, VP16, VP22, and US11) using oligohistidine-tagged human ubiquitous kinesin heavy chain (uKHC) as bait. Of these viral proteins, a direct interaction between uKHC and US11 was identified. In vitro studies identified residues 867 to 894 as the US11-binding site in uKHC located within the proposed heptad repeat cargo-binding domain of uKHC. In addition, the uKHC-binding site in US11 maps to the C-terminal RNA-binding domain. US11 is consistently cotransported with kinetics similar to those of the capsid protein VP5 into the axons of dissociated rat neurons, unlike the other tegument proteins VP16 and VP22. These observations suggest a major role for the uKHC-US11 interaction in anterograde transport of unenveloped HSV nucleocapsids in axons.