Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7965): 513-518, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37015289

RESUMEN

The replacement of benzene rings with sp3-hybridized bioisosteres in drug candidates generally improves pharmacokinetic properties while retaining biological activity1-5. Rigid, strained frameworks such as bicyclo[1.1.1]pentane and cubane are particularly well suited as the ring strain imparts high bond strength and thus metabolic stability on their C-H bonds. Cubane is the ideal bioisostere as it provides the closest geometric match to benzene6,7. At present, however, all cubanes in drug design, like almost all benzene bioisosteres, act solely as substitutes for mono- or para-substituted benzene rings1-7. This is owing to the difficulty of accessing 1,3- and 1,2-disubstituted cubane precursors. The adoption of cubane in drug design has been further hindered by the poor compatibility of cross-coupling reactions with the cubane scaffold, owing to a competing metal-catalysed valence isomerization8-11. Here we report expedient routes to 1,3- and 1,2-disubstituted cubane building blocks using a convenient cyclobutadiene precursor and a photolytic C-H carboxylation reaction, respectively. Moreover, we leverage the slow oxidative addition and rapid reductive elimination of copper to develop C-N, C-C(sp3), C-C(sp2) and C-CF3 cross-coupling protocols12,13. Our research enables facile elaboration of all cubane isomers into drug candidates, thus enabling ideal bioisosteric replacement of ortho-, meta- and para-substituted benzenes.

2.
Chimia (Aarau) ; 74(4): 278-284, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32331547

RESUMEN

N-Heterocyclic carbenes (NHCs) are the ligands of choice in a large variety of transformations entailing different transition metals. However, the number and variety of chiral NHCs suitable as stereo-controlling ligands in asymmetric catalysis remains limited. Herein we highlight the introduction of a modular NHC ligand family, consisting of a chiral version of the widely used IPr ligand. These chiral NHC ligands were applied in the nickel-catalyzed enantioselective C-H functionalization of N-heterocycles. Nickel-NHC catalysis unlocked the stereoselective C-H annulation of 2- and 4-pyridones, delivering fused bicyclic compounds found in many biologically active compounds. Applying a bulky, yet flexible ligand scaffold enabled the highly enantioselective C-H functionalization of pyridones under mild conditions. The introduction of a bulky chiral SIPr analogue enabled the nickel-catalyzed enantioselective C-H functionalization of indoles, yielding valuable tetrahydropyridoindoles. Additionally, pyrrolopyridines, pyrrolopyrimidines and pyrroles were efficiently functionalized, delivering chiral annulated azoles.


Asunto(s)
Metano/análogos & derivados , Catálisis , Compuestos Heterocíclicos , Ligandos , Metano/química , Níquel , Estereoisomerismo
3.
Angew Chem Int Ed Engl ; 58(32): 11044-11048, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31095857

RESUMEN

An enantioselective nickel(0)-catalyzed C-H functionalization of indoles and pyrroles that does not require the typical Lewis basic directing groups is disclosed. The reaction provides access to valuable tetrahydropyridoindoles and tetrahydroindolizines in high yields and enantioselectivity under mild reaction conditions. The process is characterized by a clear endo-cyclization preference to yield the sought-after six-membered-ring products. Key for the success of the activation and selectivity in the cyclization was the development of a novel chiral SIPr carbene ligand analogue with very bulky flanking groups.

4.
J Am Chem Soc ; 140(13): 4489-4493, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29543449

RESUMEN

Annulated pyridones are an important scaffold found in many biologically active compounds. A Ni(0)-catalyzed C-H functionalization of 2- and 4-pyridones is disclosed, providing access to annulated pyridones via enantioselective intramolecular olefin hydroarylation. Key to the success of the transformation was the development of a sterically hindered and tunable N-heterocyclic carbene ligand resembling a chiral version of IPr. This ligand allows for mild reaction temperatures, and leads to the annulated pyridones in excellent yields and enantioselectivities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA