Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Autoimmun ; 144: 103174, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38377868

RESUMEN

In many autoimmune diseases, autoantigen-specific Th17 cells play a pivotal role in disease pathogenesis. Th17 cells can transdifferentiate into other T cell subsets in inflammatory conditions, however, there have been no attempts to target Th17 cell plasticity using vaccines. We investigated if autoantigen-specific Th17 cells could be specifically targeted using a therapeutic vaccine approach, where antigen was formulated in all-trans retinoic acid (ATRA)-containing liposomes, permitting co-delivery of antigen and ATRA to the same target cell. Whilst ATRA was previously found to broadly reduce Th17 responses, we found that antigen formulated in ATRA-containing cationic liposomes only inhibited Th17 cells in an antigen-specific manner and not when combined with an irrelevant antigen. Furthermore, this approach shifted existing Th17 cells away from IL-17A expression and transcriptomic analysis of sorted Th17 lineage cells from IL-17 fate reporter mice revealed a shift of antigen-specific Th17 cells to exTh17 cells, expressing functional markers associated with T cell regulation and tolerance. In the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, vaccination with myelin-specific (MOG) antigen in ATRA-containing liposomes reduced Th17 responses and alleviated disease. This highlights the potential of therapeutic vaccination for changing the phenotype of existing Th17 cells in the context of immune mediated diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Th17 , Ratones , Animales , Liposomas/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Autoantígenos/metabolismo , Adyuvantes Inmunológicos , Inmunización , Vacunación , Fenotipo , Ratones Endogámicos C57BL , Células TH1
2.
Cytometry A ; 93(5): 525-532, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29513398

RESUMEN

Globally, an estimated 131 million new cases of chlamydial infection occur annually. Chlamydia trachomatis infection can cause permanent damage to the fallopian tubes in woman, resulting in infertility and a risk of ectopic pregnancy. There is a great need for a vaccine against Chlamydia trachomatis and as a result there is a need for assays to evaluate functional immune responses for use in future clinical trials and epidemiological studies. Antibodies play a crucial role in the defense against infection and can be protective by several functions, including phagocytosis and neutralization. Vaccine development could greatly benefit from a method to measure functional C. trachomatis-specific antibodies in a large number of samples. In the current in vitro antibody protection assays, which measure the capacity of antibodies to facilitate phagocytic uptake of C. trachomatis, the phagocytosed bacteria have to be counted manually. This is both labor demanding, time consuming, and it prevents high-throughput usage of this method. In this study, we, therefore, developed a simple and rapid flow cytometry based assay to measure the capacity of antibodies to mediate Fc-receptor dependent phagocytosis. This method is highly reproducible and suitable to analyze large numbers of clinical and nonclinical samples. © 2018 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC.


Asunto(s)
Anticuerpos Antibacterianos/análisis , Infecciones por Chlamydia , Citometría de Flujo/métodos , Fagocitosis , Línea Celular , Chlamydia trachomatis , Humanos
3.
J Immunol ; 196(8): 3364-74, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26969753

RESUMEN

Cluster of virulence responder/sensor (CovR/S) mutant group A streptococci (GAS) are serious human pathogens of multiple M protein strains that upregulate expression of virulence factors, including the IL-8 proteaseStreptococcus pyogenescell envelope proteinase (SpyCEP), thus blunting neutrophil-mediated killing and enabling ingress of bacteria from a superficial wound to deep tissue. We previously showed that a combination vaccine incorporating J8-DT (conserved peptide vaccine from the M protein) and a recombinant SpyCEP fragment protects against CovR/S mutants. To enhance the vaccine's safety profile, we identified a minimal epitope (S2) that was the target for anti-SpyCEP Abs that could protect IL-8 from SpyCEP-mediated proteolysis. Abs from healthy humans and from mice experimentally infected with GAS also recognized S2, albeit at low titers. Native SpyCEP may be poorly immunogenic (cryptic or subdominant), and it would be to the organism's advantage if the host did not induce a strong Ab response against it. However, S2 conjugated to diphtheria toxoid is highly immunogenic and induces Abs that recognize and neutralize SpyCEP. Hence, we describe a two-component peptide vaccine that induces Abs (anti-S2) that protect IL-8 from proteolysis and other Abs (anti-J8) that cause strain-independent killing in the presence of neutrophils. We show that either component alone is ineffectual in preventing skin infection and bacteremia due to CovR/S mutants but that the combination induces complete protection. This protection correlated with a significant influx of neutrophils to the infection site. The data strongly suggest that the lack of natural immunity to hypervirulent GAS strains in humans could be rectified by this combination vaccine.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Portadoras/inmunología , Péptido Hidrolasas/inmunología , Infecciones Estreptocócicas/inmunología , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Bacteriemia/inmunología , Bacteriemia/microbiología , Bacteriemia/prevención & control , Proteínas Bacterianas/inmunología , Toxoide Diftérico/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Neutrófilos/inmunología , Péptido Hidrolasas/biosíntesis , Péptido Hidrolasas/genética , Piel/microbiología , Enfermedades Cutáneas Bacterianas/inmunología , Enfermedades Cutáneas Bacterianas/microbiología , Enfermedades Cutáneas Bacterianas/prevención & control , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/prevención & control , Streptococcus pyogenes/patogenicidad , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/inmunología , Factores de Virulencia/biosíntesis , Factores de Virulencia/genética , Factores de Virulencia/inmunología
4.
J Immunol ; 195(4): 1657-64, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26163588

RESUMEN

Each year, millions of people are infected with Streptococcus pyogenes, leading to an estimated 500,000 annual deaths worldwide. For unknown reasons, school-aged children have substantially higher infection rates than adults. The goal for this study was to provide, to our knowledge, the first detailed characterization of the human adaptive immune response against S. pyogenes in both children and adults. We report that all adults in our study, as well as most children, showed immunity against the two conserved group A streptococci (GAS) Ags, streptococcal C5a peptidase and immunogenic secreted protein. The response primarily consisted of three subsets of Th1 T cells, in which the TNF-α(+) and IL-2(+)TNF-α(+) subsets were most frequent. Humoral immunity was dominated by IgG1 and IgG3, whereas the Th2-associated IgG4 isotype was only detected at very low amounts. IgG3 levels correlated significantly with IFN-γ, but not with IL-5, IL-13, IL-17, or TNF-α. Interestingly, children showed a similar pattern of Ag-specific cytokine release, but displayed significantly lower levels of IgG3 and IFN-γ compared with adults. Thus, human immune responses against S. pyogenes consist of a robust Th1 cellular memory response in combination with IgG1/IgG3-dominated humoral immunity that increase with age. The significance of these data regarding both the increased GAS infection rate in children and the development of protective GAS vaccines is discussed.


Asunto(s)
Inmunidad Adaptativa , Inmunoglobulina G/inmunología , Interferón gamma/metabolismo , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/metabolismo , Streptococcus pyogenes/inmunología , Adolescente , Adulto , Factores de Edad , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Niño , Preescolar , Citocinas/metabolismo , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/sangre , Masculino , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Adulto Joven
5.
Infect Immun ; 83(12): 4731-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26416911

RESUMEN

When infected with Mycobacterium tuberculosis, most individuals will remain clinically healthy but latently infected. Latent infection has been proposed to partially involve M. tuberculosis in a nonreplicating stage, which therefore represents an M. tuberculosis phenotype that the immune system most likely will encounter during latency. It is therefore relevant to examine how this particular nonreplicating form of M. tuberculosis interacts with the host immune system. To study this, we first induced a state of nonreplication through prolonged nutrient starvation of M. tuberculosis in vitro. This resulted in nonreplicating persistence even after prolonged culture in phosphate-buffered saline. Infection with either exponentially growing M. tuberculosis or nutrient-starved M. tuberculosis resulted in similar lung CFU levels in the first phase of the infection. However, between week 3 and 6 postinfection, there was a very pronounced increase in bacterial levels and associated lung pathology in nutrient-starved-M. tuberculosis-infected mice. This was associated with a shift from CD4 T cells that coexpressed gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) or IFN-γ, TNF-α, and interleukin-2 to T cells that only expressed IFN-γ. Thus, nonreplicating M. tuberculosis induced through nutrient starvation promotes a bacterial form that is genetically identical to exponentially growing M. tuberculosis yet characterized by a differential impact on the immune system that may be involved in undermining host antimycobacterial immunity and facilitate increased pathology and transmission.


Asunto(s)
Inmunidad Adaptativa , Antígenos Bacterianos/inmunología , Mycobacterium tuberculosis/inmunología , Péptidos/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Antígenos Bacterianos/administración & dosificación , Quimera , Recuento de Colonia Microbiana , Medios de Cultivo/química , Medios de Cultivo/farmacología , Modelos Animales de Enfermedad , Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inmunofenotipificación , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucina-2/biosíntesis , Interleucina-2/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Péptidos/administración & dosificación , Péptidos/síntesis química , Inanición , Linfocitos T/microbiología , Linfocitos T/patología , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología , Tuberculosis Pulmonar/prevención & control , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología , Vacunación
6.
Nat Commun ; 15(1): 1665, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396019

RESUMEN

The clinical development of an effective Chlamydia vaccine requires in-depth understanding of how well protective pre-clinical immune signatures translate to humans. Here, we report a comparative immunological characterization of CTH522/CAF®01 in female mice and humans. We find a range of immune signatures that translate from mouse to human, including a Th1/Th17 cytokine profile and antibody functionality. We identify vaccine-induced T cell epitopes, conserved among Chlamydia serovars, and previously found in infected individuals. Using the mouse model, we show that the common immune signature protected against ascending infection in mice, and vaccine induced antibodies could delay bacterial ascension to the oviduct, as well as development of pathology, in a T cell depleted mouse model. Finally, we demonstrate long-lasting immunity and protection of mice one year after vaccination. Based on the results obtained in the present study, we propose to further investigate CTH522/CAF®01 in a phase IIb study.


Asunto(s)
Infecciones por Chlamydia , Chlamydia , Vacunas , Humanos , Femenino , Animales , Ratones , Infecciones por Chlamydia/microbiología , Anticuerpos , Vacunación , Vacunas Bacterianas
7.
Lancet Infect Dis ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615673

RESUMEN

BACKGROUND: There is no vaccine against the major global pathogen Chlamydia trachomatis; its different serovars cause trachoma in the eye or chlamydia in the genital tract. We did a clinical trial administering CTH522, a recombinant version of the C trachomatis major outer membrane molecule, in different dose concentrations with and without adjuvant, to establish its safety and immunogenicity when administered intramuscularly, intradermally, and topically into the eye, in prime-boost regimens. METHODS: CHLM-02 was a phase 1, double-blind, randomised, placebo-controlled trial at the National Institute for Health Research Imperial Clinical Research Facility, London, UK. Participants were healthy men and non-pregnant women aged 18-45 years, without pre-existing C trachomatis genital infection. Participants were assigned into six groups by the electronic database in a pre-prepared randomisation list (A-F). Participants were randomly assigned (1:1:1:1:1) to each of the groups A-E (12 participants each) and 6 were randomly assigned to group F. Investigators were masked to treatment allocation. Groups A-E received investigational medicinal product and group F received placebo only. Two liposomal adjuvants were compared, CAF01 and CAF09b. The groups were intramuscular 85 µg CTH522-CAF01, or placebo on day 0 and two boosters or placebo at day 28 and 112, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (A); intramuscular 85 µg CTH522-CAF01, two boosters at day 28 and 112 with additional topical ocular administration of CTH522, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (B); intramuscular 85 µg CTH522-CAF01, two boosters at day 28 and 112 with additional intradermal administration of CTH522, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (C); intramuscular 15 µg CTH522-CAF01, two boosters at day 28 and 112, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (D); intramuscular 85 µg CTH522-CAF09b, two boosters at day 28 and 112, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (E); intramuscular placebo (F). The primary outcome was safety; the secondary outcome (humoral immunogenicity) was the percentage of trial participants achieving anti-CTH522 IgG seroconversion, defined as four-fold and ten-fold increase over baseline concentrations. Analyses were done as intention to treat and as per protocol. The trial is registered with ClinicalTrials.gov, NCT03926728, and is complete. FINDINGS: Between Feb 17, 2020 and Feb 22, 2022, of 154 participants screened, 65 were randomly assigned, and 60 completed the trial (34 [52%] of 65 women, 46 [71%] of 65 White, mean age 26·8 years). No serious adverse events occurred but one participant in group A2 discontinued dosing after having self-limiting adverse events after both placebo and investigational medicinal product doses. Study procedures were otherwise well tolerated; the majority of adverse events were mild to moderate, with only seven (1%) of 865 reported as grade 3 (severe). There was 100% four-fold seroconversion rate by day 42 in the active groups (A-E) and no seroconversion in the placebo group. Serum IgG anti-CTH522 titres were higher after 85 µg CTH522-CAF01 than 15 µg, although not significantly (intention-to-treat median IgG titre ratio groups A-C:D=5·6; p=0·062), with no difference after three injections of 85 µg CTH522-CAF01 compared with CTH522-CAF09b (group E). Intradermal CTH522 (group C) induced high titres of serum IgG anti-CTH522 neutralising antibodies against serovars B (trachoma) and D (urogenital). Topical ocular CTH522 (group B) at day 28 and 112 induced higher total ocular IgA compared with baseline (p<0·001). Participants in all active vaccine groups, particularly groups B and E, developed cell mediated immune responses against CTH522. INTERPRETATION: CTH522, adjuvanted with CAF01 or CAF09b, is safe and immunogenic, with 85 µg CTH522-CAF01 inducing robust serum IgG binding titres. Intradermal vaccination conferred systemic IgG neutralisation breadth, and topical ocular administration increased ocular IgA formation. These findings indicate CTH522 vaccine regimens against ocular trachoma and urogenital chlamydia for testing in phase 2, clinical trials. FUNDING: The EU Horizon Program TRACVAC.

8.
Front Immunol ; 14: 1178741, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287960

RESUMEN

Background: Ocular infections with Chlamydia trachomatis serovars A-C cause the neglected tropical disease trachoma. As infection does not confer complete immunity, repeated infections are common, leading to long-term sequelae such as scarring and blindness. Here, we apply a systems serology approach to investigate whether systemic antibody features are associated with susceptibility to infection. Methods: Sera from children in five trachoma endemic villages in the Gambia were assayed for 23 antibody features: IgG responses towards two C. trachomatis antigens and three serovars [elementary bodies and major outer membrane protein (MOMP), serovars A-C], IgG responses towards five MOMP peptides (serovars A-C), neutralization, and antibody-dependent phagocytosis. Participants were considered resistant if they subsequently developed infection only when over 70% of other children in the same compound were infected. Results: The antibody features assayed were not associated with resistance to infection (false discovery rate < 0.05). Anti-MOMP SvA IgG and neutralization titer were higher in susceptible individuals (p < 0.05 before multiple testing adjustment). Classification using partial least squares performed only slightly better than chance in distinguishing between susceptible and resistant participants based on systemic antibody profile (specificity 71%, sensitivity 36%). Conclusions: Systemic infection-induced IgG and functional antibody responses do not appear to be protective against subsequent infection. Ocular responses, IgA, avidity, or cell-mediated responses may play a greater role in protective immunity than systemic IgG.


Asunto(s)
Tracoma , Niño , Humanos , Tracoma/diagnóstico , Tracoma/epidemiología , Chlamydia trachomatis , Formación de Anticuerpos , Ojo/metabolismo , Inmunoglobulina G
9.
NPJ Vaccines ; 8(1): 189, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135685

RESUMEN

Class-switching to IgG2a/c in mice is a hallmark response to intracellular pathogens. T cells can promote class-switching and the predominant pathway for induction of IgG2a/c antibody responses has been suggested to be via stimulation from Th1 cells. We previously formulated CAF®01 (cationic liposomes containing dimethyldioctadecylammonium bromide (DDA) and Trehalose-6,6-dibehenate (TDB)) with the lipidated TLR7/8 agonist 3M-052 (DDA/TDB/3M-052), which promoted robust Th1 immunity in newborn mice. When testing this adjuvant in adult mice using the recombinant Chlamydia trachomatis (C.t.) vaccine antigen CTH522, it similarly enhanced IgG2a/c responses compared to DDA/TDB, but surprisingly reduced the magnitude of the IFN-γ+Th1 response in a TLR7 agonist dose-dependent manner. Single-cell RNA-sequencing revealed that DDA/TDB/3M-052 liposomes initiated early transcription of class-switch regulating genes directly in pre-germinal center B cells. Mixed bone marrow chimeras further demonstrated that this adjuvant did not require Th1 cells for IgG2a/c switching, but rather facilitated TLR7-dependent T-bet programming directly in B cells. This study underlines that adjuvant-directed IgG2a/c class-switching in vivo can occur in the absence of T-cell help, via direct activation of TLR7 on B cells and positions DDA/TDB/3M-052 as a powerful adjuvant capable of eliciting type I-like immunity in B cells without strong induction of Th1 responses.

10.
Infect Immun ; 80(10): 3533-44, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22851756

RESUMEN

Th17 cells are increasingly being recognized as an important T helper subset for immune-mediated protection, especially against pathogens at mucosal ports of entry. In several cases, it would thus be highly relevant to induce Th17 memory by vaccination. Th17 cells are reported to exhibit high plasticity and may not stably maintain their differentiation program once induced, questioning the possibility of inducing durable Th17 memory. Accordingly, there is no consensus as to whether Th17 memory can be established unless influenced by continuous Th17 polarizing conditions. We have previously reported (T. Lindenstrøm, et al., J. Immunol. 182:8047-8055, 2009) that the cationic liposome adjuvant CAF01 can prime both Th1 and Th17 responses and promote robust, long-lived Th1 memory. Here, we demonstrate that subunit vaccination in mice with CAF01 leads to establishment of bona fide Th17 memory cells. Accordingly, Th17 memory cells exhibited lineage stability by retaining both phenotypic and functional properties for nearly 2 years. Antigen-specific, long-term Th17 memory cells were found to be mobilized from lung-draining lymph nodes to the lung following an aerosol challenge by Mycobacterium tuberculosis nearly 2 years after their induction and proliferated at levels comparable to those of Th1 memory cells. During the infection, the vaccine-induced Th17 memory cells expanded in the lungs and adapted Th1 characteristics, implying that they represent a metastable population which exhibits plasticity when exposed to prolonged Th1 polarizing, inflammatory conditions such as those found in the M. tuberculosis-infected lung. In the absence of overt inflammation, however, stable bona fide Th17 memory can indeed be induced by parenteral immunization.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Memoria Inmunológica/fisiología , Células TH1/inmunología , Células Th17/inmunología , Vacunas contra la Tuberculosis/inmunología , Animales , Proteínas Bacterianas/inmunología , Citocinas/genética , Citocinas/metabolismo , Femenino , Ganglios Linfáticos , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis , Tuberculosis/prevención & control
11.
Expert Rev Vaccines ; 21(11): 1555-1567, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36004386

RESUMEN

INTRODUCTION: Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. A licensed vaccine is not yet available, but the first vaccines have entered clinical trials. AREAS COVERED: We describe the progress that has been made in our understanding of the type of immunity that a protective vaccine should induce, and the challenges that vaccine developers face. We also focus on the clinical development of a chlamydia vaccine. The first chlamydia vaccine candidate has now been tested in a clinical phase I trial, and another phase I trial is currently running. We discuss what it will take to continue this development and what future trial setups could look like. EXPERT OPINION: The chlamydia field is coming of age and the first phase I clinical trial of a C. trachomatis vaccine has been successfully completed. We expect and hope that this will motivate various stakeholders to support further development of chlamydia vaccines in humans.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Humanos , Infecciones por Chlamydia/prevención & control , Desarrollo de Vacunas , Vacunas Bacterianas
12.
Front Immunol ; 13: 1057375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505459

RESUMEN

It is of international priority to develop a vaccine against sexually transmitted Chlamydia trachomatis infections to combat the continued global spread of the infection. The optimal immunization strategy still remains to be fully elucidated. The aim of this study was to evaluate immunization strategies in a nonhuman primate (NHP) model. Cynomolgus macaques (Macaqua fascicularis) were immunized following different multi-component prime-boost immunization-schedules and subsequently challenged with C. trachomatis SvD in the lower genital tract. The immunization antigens included the recombinant protein antigen CTH522 adjuvanted with CAF01 or aluminium hydroxide, MOMP DNA antigen and MOMP vector antigens (HuAd5 MOMP and MVA MOMP). All antigen constructs were highly immunogenic raising significant systemic C. trachomatis-specific IgG responses. In particularly the CTH522 protein vaccinated groups raised a fast and strong pecificsIgG in serum. The mapping of specific B cell epitopes within the MOMP showed that all vaccinated groups, recognized epitopes near or within the variable domains (VD) of MOMP, with a consistent VD4 response in all animals. Furthermore, serum from all vaccinated groups were able to in vitro neutralize both SvD, SvE and SvF. Antibody responses were reflected on the vaginal and ocular mucosa, which showed detectable levels of IgG. Vaccines also induced C. trachomatis-specific cell mediated responses, as shown by in vitro stimulation and intracellular cytokine staining of peripheral blood mononuclear cells (PBMCs). In general, the protein (CTH522) vaccinated groups established a multifunctional CD4 T cell response, whereas the DNA and Vector vaccinated groups also established a CD8 T cells response. Following vaginal challenge with C. trachomatis SvD, several of the vaccinated groups showed accelerated clearance of the infection, but especially the DNA group, boosted with CAF01 adjuvanted CTH522 to achieve a balanced CD4/CD8 T cell response combined with an IgG response, showed accelerated clearance of the infection.


Asunto(s)
Chlamydia trachomatis , Leucocitos Mononucleares , Animales , Femenino , Vacunación , Inmunización , Primates , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Inmunoglobulina G
14.
Eur J Immunol ; 40(5): 1342-54, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20186878

RESUMEN

Most novel vaccines against infectious diseases are based on recombinant Ag; however, only few studies have compared Ag-specific immune responses induced by natural infection with that induced by the same Ag in a recombinant form. Here, we studied the epitope recognition pattern of the tuberculosis vaccine Ag, TB10.4, in a recombinant form, or when expressed by the pathogen Mycobacterium tuberculosis (M.tb), or by the current anti-tuberculosis vaccine, Mycobacterium bovis BCG. We showed that BCG and M.tb induced a similar CD4+ T-cell specific TB10.4 epitope-pattern, which differed completely from that induced by recombinant TB10.4. This difference was not due to post-translational modifications of TB10.4 or because TB10.4 is secreted from BCG and M.tb as a complex with Rv0287. In addition, BCG and TB10.4/CAF01 were both taken up by DC and macrophages in vivo, and in vitro uptake experiments revealed that both TB10.4 and BCG were transported to Lamp+-compartments. BCG and TB10.4 however, were directed to different types of Lamp+-compartments in the same APC, which may lead to different epitope recognition patterns. In conclusion, we show that different vectors can induce completely different recognition of the same protein.


Asunto(s)
Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Epítopos de Linfocito T/inmunología , Mycobacterium tuberculosis/inmunología , Subgrupos de Linfocitos T/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Animales , Antígenos Bacterianos/genética , Vacuna BCG/farmacocinética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Proteínas Portadoras/inmunología , Cruzamientos Genéticos , Femenino , Inmunidad Innata , Inmunización , Interferón gamma/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Oligopéptidos/síntesis química , Oligopéptidos/inmunología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacocinética , Subgrupos de Linfocitos T/metabolismo , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/farmacocinética , Vacunas Sintéticas/inmunología
15.
J Immunol ; 183(4): 2659-68, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19620314

RESUMEN

The ESAT-6 (early secretory antigenic target) molecule is a very important target for T cell recognition during infection with Mycobacterium tuberculosis. Although ESAT-6 contains numerous potential T cell epitopes, the immune response during infection is often focused toward a few immunodominant epitopes. By immunization with individual overlapping synthetic peptides in cationic liposomes (cationic adjuvant formulation, CAF01) we demonstrate that the ESAT-6 molecule contains several subdominant epitopes that are not recognized in H-2(d/b) mice either during tuberculosis infection or after immunization with ESAT-6/CAF01. Immunization with a truncated ESAT-6 molecule (Delta15ESAT-6) that lacks the immunodominant ESAT-6(1-15) epitope refocuses the response to include T cells directed to these subdominant epitopes. After aerosol infection of immunized mice, T cells directed to both dominant (ESAT-6-immunized) and subdominant epitopes (Delta15ESAT-6-immunized) proliferate and are recruited to the lung. The vaccine-promoted response consists mainly of double- (TNF-alpha and IL-2) or triple-positive (IFN-gamma, TNF-alpha, and IL-2) polyfunctional T cells. This polyfunctional quality of the CD4(+) T cell response is maintained unchanged even during the later stages of infection, whereas the naturally occurring infection stimulates a response to the ESAT-6(1-15) epitope that consist almost exclusively of CD4(+) effector T cells. ESAT-6 and Delta15ESAT-6 both give significant protection against aerosol challenge with tuberculosis, but the most efficient protection against pulmonary infection is mediated by the subdominant T cell repertoire primed by Delta15ESAT-6.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/normas , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/microbiología , Epítopos Inmunodominantes/inmunología , Activación de Linfocitos/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Secuencia de Aminoácidos , Animales , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Epítopos Inmunodominantes/metabolismo , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/normas , Tuberculosis/inmunología , Tuberculosis/metabolismo , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/normas
16.
Front Immunol ; 12: 790463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925371

RESUMEN

The requirement for vaccine-induced tissue-resident immunity for protection against one or repeated infections with Chlamydia trachomatis (C.t.) is still not fully resolved. In this study, our aim was to investigate to which degree tissue-resident Th1/Th17 T cells in the genital tract (GT) could add to the protection mediated by circulating immunity. Out of several mucosal vaccine strategies, a strategy termed SIM (for simultaneous intrauterine and parenteral immunization with CAF01 adjuvanted CTH522), was superior in generating genital tract tissue-resident Th1/Th17 T cell immunity. This led to a faster and stronger local CD4 T cell response post infection, consisting of multifunctional IFNγ/TNFα-producing Th1 T cells and IFNγ/TNFα/IL-17-producing Th17 T cells, and a faster recruitment of innate immune cells. Post infection, SIM animals showed an additional significant reduction in bacterial levels compared to mice having received only a parenteral vaccine. Nevertheless, the parenteral strategy reduced bacterial levels by 75%, and interestingly, post infection, these mice generated their own vaccine-derived genital tract tissue-resident memory Th1/Th17 T cells, which upon a subsequent infection showed as fast an activation in the genital tract, as observed in SIM mice. Furthermore, in contrast to after the first infection, both groups of mice now showed a similar infection-induced boost in local vaginal IgA and IgG titers. Thus, vaccine-induced resident immunity, generated pre-infection, led to an advantage in the response against the first infection, but not the second infection, suggesting that a parenteral vaccine strategy is a suitable vaccine strategy against infections with Chlamydia trachomatis.


Asunto(s)
Vacunas Bacterianas/administración & dosificación , Infecciones por Chlamydia/prevención & control , Chlamydia trachomatis/inmunología , Inmunidad Mucosa , Administración Intravaginal , Animales , Anticuerpos Antibacterianos , Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Chlamydia/diagnóstico , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/aislamiento & purificación , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunogenicidad Vacunal , Inyecciones Subcutáneas , Ratones , Células TH1/inmunología , Células Th17/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vagina/inmunología , Vagina/microbiología
17.
mBio ; 12(1)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622722

RESUMEN

Infections with Streptococcus pyogenes and their sequelae are responsible for an estimated 18 million cases of serious disease with >700 million new primary cases and 500,000 deaths per year. Despite the burden of disease, there is currently no vaccine available for this organism. Here, we define a combination vaccine P*17/K4S2 comprising of 20-mer B-cell peptide epitopes, p*17 (a mutant derived from the highly conserved C3-repeat region of the M-protein), and K4S2 (derived from the streptococcal anti-neutrophil factor, Spy-CEP). The peptides are chemically conjugated to either diphtheria toxoid (DT) or a nontoxic mutant form of diphtheria toxin, CRM197. We demonstrate that a prime-pull immunization regimen involving two intramuscular inoculations with P*17/K4S2 adjuvanted with a two-component liposomal adjuvant system (CAF01; developed by Statens Serum Institut [SSI], Denmark), followed by an intranasal inoculation of unadjuvanted vaccine (in Tris) induces peptide- and S. pyogenes-binding antibodies and protects from mucosal and skin infection with hypervirulent covR/S mutant organisms. Prior vaccination with DT does not diminish the response to the conjugate peptide vaccines. Detailed Good Laboratory Practice (GLP) toxicological evaluation in male and female rats did not reveal any gross or histopathological adverse effects.IMPORTANCE A vaccine to control S. pyogenes infection is desperately warranted. S. pyogenes colonizes the upper respiratory tract (URT) and skin, from where it can progress to invasive and immune-mediated diseases. Global mortality estimates for S. pyogenes-associated diseases exceeds 500,000 deaths per year. S. pyogenes utilizes antigenic variation as a defense mechanism to circumvent host immune responses and thus a successful vaccine needs to provide strain-transcending and multicompartment (mucosal and skin) immunity. By defining highly conserved and protective epitopes from two critical virulence factors (M-protein and Spy-CEP) and combining them with a potent immunostimulant, CAF®01, we are addressing an unmet clinical need for a mucosally and skin-active subunit vaccine. We demonstrate that prime-pull immunization (2× intramuscular injections followed by intranasal immunization) promotes high sustained antibody levels in the airway mucosa and serum and protects against URT and invasive disease.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Epítopos de Linfocito B/inmunología , Inmunidad Mucosa , Inmunización/métodos , Liposomas/química , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/genética , Epítopos de Linfocito B/genética , Femenino , Liposomas/administración & dosificación , Masculino , Ratones Endogámicos BALB C , Ratas , Ratas Sprague-Dawley , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/administración & dosificación , Streptococcus pyogenes/genética , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
18.
NPJ Vaccines ; 5(1): 7, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31993218

RESUMEN

The optimal protective immunity against Chlamydia trachomatis (C.t.) is still not fully resolved. One of the unresolved issues concerns the importance of resident immunity, since a recent study showed that optimal protection against a transcervical (TC) infection required genital tissue-resident memory T cells. An important question in the Chlamydia field is therefore if a parenteral vaccine strategy, inducing only circulating immunity primed at a nonmucosal site, should be pursued by Chlamydia vaccine developers. To address this question we studied the protective efficacy of a parenteral Chlamydia vaccine, formulated in the Th1/Th17 T cell-inducing adjuvant CAF01. We found that a parenteral vaccination induced significant protection against a TC infection and against development of chronic pathology. Protection correlated with rapid recruitment of Th1/Th17 T cells to the genital tract (GT), which efficiently prevented infection-driven generation of low quality Th1 or Th17 T cells, and instead maintained a pool of high quality multifunctional Th1/Th17 T cells in the GT throughout the infection. After clearance of the infection, a pool of these cells settled in the GT as tissue-resident Th1 and Th17 cells expressing CD69 but not CD103, CD49d, or CCR7, where they responded rapidly to a reinfection. These results show that a nonmucosal parenteral strategy inducing Th1 and Th17 T cells mediates protection against both infection with C.t. as well as development of chronic pathology, and lead to post-challenge protective tissue-resident memory immunity in the genital tract.

19.
ACS Nano ; 13(2): 1116-1126, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30609354

RESUMEN

Worldwide, enteric infections rank third among all causes of disease burdens, and vaccines able to induce a strong and long-lasting intestinal immune responses are needed. Parenteral immunization generally do not generate intestinal IgA. Recently, however, injections of retinoic acid (RA) dissolved in oil, administered multiple times before vaccination to precondition the vaccine-draining lymph nodes, enabled a parenteral vaccine strategy to induce intestinal IgA. As multiple injections of RA before vaccination is not an attractive strategy for clinical practice, we aimed to develop a "one injection" vaccine formulation that upon parenteral administration induced intestinal IgA. Our vaccine formulation contained two liposomal delivery systems. One delivery system, based on 1,2-distearoyl- sn-glycero-3-phosphocholine stabilized with PEG, was designed to exhibit fast drainage of RA to local lymph nodes to precondition these for a mucosal immune response before being subjected to the vaccine antigen. The other delivery system, based on the cationic liposomal adjuvant CAF01 stabilized with cholesterol, was optimized for prolonged delivery of the antigen by migratory antigen-presenting cells to the preconditioned lymph node. Combined we call the adjuvant CAF23. We show that CAF23, administered by the subcutaneous route induces an antigen specific intestinal IgA response, making it a promising candidate adjuvant for vaccines against enteric diseases.


Asunto(s)
Adyuvantes Inmunológicos/química , Sistemas de Liberación de Medicamentos , Inmunidad Mucosa/inmunología , Inmunoglobulina A/inmunología , Liposomas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Rastreo Diferencial de Calorimetría , Femenino , Inmunización , Inyecciones Subcutáneas , Liposomas/química , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA