RESUMEN
BACKGROUND: The objective of this study was to analyze the effects of sedation administration on clinical parameters, comfort status, intubation requirements, and the pediatric intensive care unit (PICU) length of stay (LOS) in children with acute respiratory failure (ARF) receiving noninvasive ventilation (NIV). METHODS: Thirteen PICUs in Spain participated in a prospective, multicenter, observational trial from January to December 2021. Children with ARF under the age of five who were receiving NIV were included. Clinical information and comfort levels were documented at the time of NIV initiation, as well as at 3, 6, 12, 24, and 48 h. The COMFORT-behavior (COMFORT-B) scale was used to assess the patients' level of comfort. NIV failure was considered to be a requirement for endotracheal intubation. RESULTS: A total of 457 patients were included, with a median age of 3.3 months (IQR 1.3-16.1). Two hundred and thirteen children (46.6%) received sedation (sedation group); these patients had a higher heart rate, higher COMFORT-B score, and lower SpO2/FiO2 ratio than did those who did not receive sedation (non-sedation group). A significantly greater improvement in the COMFORT-B score at 3, 6, 12, and 24 h, heart rate at 6 and 12 h, and SpO2/FiO2 ratio at 6 h was observed in the sedation group. Overall, the NIV success rate was 95.6%-intubation was required in 6.1% of the sedation group and in 2.9% of the other group (p = 0.092). Multivariate analysis revealed that the PRISM III score at NIV initiation (OR 1.408; 95% CI 1.230-1.611) and respiratory rate at 3 h (OR 1.043; 95% CI 1.009-1.079) were found to be independent predictors of NIV failure. The PICU LOS was correlated with weight, PRISM III score, respiratory rate at 12 h, SpO2 at 3 h, FiO2 at 12 h, NIV failure and NIV duration. Sedation use was not found to be independently related to NIV failure or to the PICU LOS. CONCLUSIONS: Sedation use may be useful in children with ARF treated with NIV, as it seems to improve clinical parameters and comfort status but may not increase the NIV failure rate or PICU LOS, even though sedated children were more severe at technique initiation in the present sample.
Asunto(s)
Unidades de Cuidado Intensivo Pediátrico , Ventilación no Invasiva , Insuficiencia Respiratoria , Humanos , Ventilación no Invasiva/métodos , Ventilación no Invasiva/estadística & datos numéricos , Estudios Prospectivos , Femenino , Masculino , Lactante , Unidades de Cuidado Intensivo Pediátrico/estadística & datos numéricos , Unidades de Cuidado Intensivo Pediátrico/organización & administración , Insuficiencia Respiratoria/terapia , España , Preescolar , Hipnóticos y Sedantes/uso terapéutico , Hipnóticos y Sedantes/administración & dosificación , Sedación Consciente/métodos , Sedación Consciente/estadística & datos numéricosRESUMEN
In this study, the novel mobile dynamometric platform, OREKA, was utilized to perform an extensive analysis of the centre of pressure behaviour during different tilt motion exercises. This platform is based on a parallel manipulator mechanism and can perform rotations around both horizontal axes and a vertical translation. A group of participants took part in an experimental campaign involving the completion of a set of exercises. The aim was to evaluate the platform's potential practical application and investigate the impact of visual on-screen feedback on centre of pressure motion through multiple balance indicators. The use of the OREKA platform enables the study of the impact on a user's balance control behaviour under different rotational perturbations, depending on the availability of real-time visual feedback on a screen. Furthermore, it presented data identifying postural control variations among clinically healthy individuals. These findings are fundamental to comprehending the dynamics of body balance. Further investigation is needed to explore these initial findings and fully unlock the potential of the OREKA platform for balance assessment methodologies.
RESUMEN
Accurate localization for autonomous vehicle operations is essential in dense urban areas. In order to ensure safety, positioning algorithms should implement fault detection and fallback strategies. While many strategies stop the vehicle once a failure is detected, in this work a new framework is proposed that includes an improved reconfiguration module to evaluate the failure scenario and offer alternative positioning strategies, allowing continued driving in degraded mode until a critical failure is detected. Furthermore, as many failures in sensors can be temporary, such as GPS signal interruption, the proposed approach allows the return to a non-fault state while resetting the alternative algorithms used in the temporary failure scenario. The proposed localization framework is validated in a series of experiments carried out in a simulation environment. Results demonstrate proper localization for the driving task even in the presence of sensor failure, only stopping the vehicle when a fully degraded state is achieved. Moreover, reconfiguration strategies have proven to consistently reset the accumulated drift of the alternative positioning algorithms, improving the overall performance and bounding the mean error.
RESUMEN
BACKGROUND: The high demanding computational requirements necessary to carry out protein motion simulations make it difficult to obtain information related to protein motion. On the one hand, molecular dynamics simulation requires huge computational resources to achieve satisfactory motion simulations. On the other hand, less accurate procedures such as interpolation methods, do not generate realistic morphs from the kinematic point of view. Analyzing a protein's movement is very similar to serial robots; thus, it is possible to treat the protein chain as a serial mechanism composed of rotational degrees of freedom. Recently, based on this hypothesis, new methodologies have arisen, based on mechanism and robot kinematics, to simulate protein motion. Probabilistic roadmap method, which discretizes the protein configurational space against a scoring function, or the kinetostatic compliance method that minimizes the torques that appear in bonds, aim to simulate protein motion with a reduced computational cost. RESULTS: In this paper a new viewpoint for protein motion simulation, based on mechanism kinematics is presented. The paper describes a set of methodologies, combining different techniques such as structure normalization normalization processes, simulation algorithms and secondary structure detection procedures. The combination of all these procedures allows to obtain kinematic morphs of proteins achieving a very good computational cost-error rate, while maintaining the biological meaning of the obtained structures and the kinematic viability of the obtained motion. CONCLUSIONS: The procedure presented in this paper, implements different modules to perform the simulation of the conformational change suffered by a protein when exerting its function. The combination of a main simulation procedure assisted by a secondary structure process, and a side chain orientation strategy, allows to obtain a fast and reliable simulations of protein motion.
Asunto(s)
Proteínas/análisis , Algoritmos , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas/químicaRESUMEN
Axion insulators are 3D magnetic topological insulators supporting hinge states and quantized magnetoelectric effects, recently proposed for detecting dark-matter axionic particles via their axionic excitations. Beyond theoretical interest, obtaining a photonic counterpart of axion insulators offers potential for advancing magnetically-tunable photonic devices and axion haloscopes based on axion-photon conversion. This work proposes an axionic 3D phase within a photonic setup. By building inversion-symmetric domain-walls in gyrotropic photonic crystals, we bind chiral modes on inversion-related hinges, ultimately leading to the realization of an axionic channel of light. These states propagate embedded in a 3D structure, thus protected from radiation in the continuum. Employing a small external gyromagnetic bias, we transition across different axionic mode configurations, enabling effective topological switching of chiral photonic fibers. While demonstrating the possibility of realizing axion photonic crystals within state-of-the-art gyrotropic setups, we propose a general scheme for rendering axion topology at domain walls of Weyl semimetals.
RESUMEN
The impact of high-pressure processing (HPP) alone and combined with sous-vide cooking (SVCOOK) on the physicochemical and sensory traits of patties from different fat and protein matrices was evaluated. Hydro-gelled and soya emulsions were tested in meat (M), hybrid (H) and plant-based (P) patties (six formulations). M patties with pork backfat were used as reference formulation. All samples were pressurized (350 MPa, 10 min) and the HPP + SVCOOK patties were subsequently vacuum-cooked (55 °C). Significant changes (p < 0.05) in physicochemical parameters were detected in HPP and HPP + SVCOOK samples. Hardness reached the maximum value (11.0 N) in HPP treated P patties with soya emulsion. The HPP + SVCOOK M patties with backfat recorded the highest hardness (29.9 N). Irrespective of the fat formulations, the sensory characteristics of the HPP and HPP + SVCOOK M patties showed a well differentiated profile compared to H and P patties. The highest intensities for fatness, flavor, chewiness and the lowest for friability were recorded in HPP + SVCOOK M patties with backfat. The differences in physicochemical and sensory parameters of HPP + SVCOOK patties were minimal. Successful fat replacement using either one of the soya or hydro-gelled emulsion could be conducted in HPP + SVCOOK patties.
RESUMEN
BACKGROUND: In addition to being effective at lowering cholesterol, statins seem to have immunomodulatory, antimicrobial, antioxidant and anticoagulant effects. OBJECTIVE: To determine whether the presentation of sepsis and its outcome in patients who have had prehospital statin therapy are different. METHODS: A prospective, observational study was carried out on 1042 septic patients, for 5 consecutive years in the Intensive Care Unit (ICU) of a tertiary hospital. RESULTS: 317 (30.4%) septic patients were receiving statins prior to hospitalization. Patients on statin therapy were older (69.7 years old vs 62.5; p <.001), males (71.9% vs 65.7%; p=.047) and with a higher mean Acute Physiology and Chronic Health Evaluation (APACHE) II score (21.7 vs 20.1; p<.001). Renal dysfunction was observed in a greater proportion (60.3% vs 51.5%; p=.009) in statin users but without requiring more continuous renal replacement therapies (CRRT). No differences were observed in Sequential Organ Failure Assessment (SOFA) score, procalcitonin levels, source of infection, microorganism and nosocomial infections in ICU and hospital mortality or length of stay. CONCLUSIONS: Statin therapy prior to hospitalization does not significantly influence sepsis presentation or sepsis outcomes.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Sepsis , Anciano , Hospitalización , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Unidades de Cuidados Intensivos , Masculino , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Sepsis/tratamiento farmacológicoRESUMEN
Time Reversal Symmetry (TRS) broken topological phases provide gapless surface states protected by topology, regardless of additional internal symmetries, spin or valley degrees of freedom. Despite the numerous demonstrations of 2D topological phases, few examples of 3D topological systems with TRS breaking exist. In this article, we devise a general strategy to design 3D Chern insulating (3D CI) cubic photonic crystals in a weakly TRS broken environment with orientable and arbitrarily large Chern vectors. The designs display topologically protected chiral and unidirectional surface states with disjoint equifrequency loops. The resulting crystals present the following characteristics: First, by increasing the Chern number, multiple surface states channels can be supported. Second, the Chern vector can be oriented along any direction simply changing the magnetization axis, opening up larger 3D CI/3D CI interfacing possibilities as compared to 2D. Third, by lowering the TRS breaking requirements, the system is ideal for realistic photonic applications where the magnetic response is weak.