Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2401394, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709222

RESUMEN

Transition metal silicates (TMSs) are attempted for the electrocatalyst of oxygen evolution reaction (OER) due to their special layered structure in recent years. However, defects such as low theoretical activity and conductivity limit their application. Researchers always prefer to composite TMSs with other functional materials to make up for their deficiency, but rarely focus on the effect of intrinsic structure adjustment on their catalytic activity, especially anion structure regulation. Herein, applying the method of interference hydrolysis and vacancy reserve, new silicate vacancies (anionic regulation) are introduced in cobalt silicate hydroxide (CoSi), named SV-CoSi, to enlarge the number and enhance the activity of catalytic sites. The overpotential of SV-CoSi declines to 301 mV at 10 mA cm-2 compared to 438 mV of CoSi. Source of such improvement is verified to be not only the increase of active sites, but also the positive effect on the intrinsic activity due to the enhancement of cobalt-oxygen covalence with the variation of anion structure by density functional theory (DFT) method. This work demonstrates that the feasible intrinsic anion structure regulation can improve OER performance of TMSs and provides an effective idea for the development of non-noble metal catalyst for OER.

2.
J Colloid Interface Sci ; 648: 251-258, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37301149

RESUMEN

Oxygen Evolution Reaction (OER) has gained significant attention due to its crucial role in renewable energy systems. The quest for efficient and low-cost OER catalysts remains a challenge of significant interest and importance. In this work, phosphate-incorporated cobalt silicate hydroxide (denoted as CoSi-P) is reported as a potential electrocatalyst for OER. The researchers first synthesized hollow spheres of cobalt silicate hydroxide Co3(Si2O5)2(OH)2 (denoted as CoSi) using SiO2 spheres as a template through a facile hydrothermal method. Phosphate (PO43-) was then introduced to layered CoSi, leading to the reconstruction of the hollow spheres into sheet-like architectures. As expected, the resulting CoSi-P electrocatalyst demonstrated low overpotential (309 mV at 10 mA·cm-2), large electrochemical active surface area (ECSA), and low Tafel slope. These parameters outperform CoSi hollow spheres and cobaltous phosphate (denoted as CoPO). Moreover, the catalytic performance achieved at 10 mA cm-2 is comparable or even better than that of most transition metal silicates/oxides/hydroxides. The findings indicate that the incorporation of phosphate into the structure of CoSi can enhance its OER performance. This study not only provides a non-noble metal catalyst CoSi-P but also demonstrates that the incorporation of phosphates into transition metal silicates (TMSs) offers a promising strategy for the design of robust, high-efficiency, and low-cost OER catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA