Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(4)2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38124016

RESUMEN

The dorsal raphe nucleus (DRN) is an important nucleus in pain regulation. However, the underlying neural pathway and the function of specific cell types remain unclear. Here, we report a previously unrecognized ascending facilitation pathway, the DRN to the mesoaccumbal dopamine (DA) circuit, for regulating pain. Chronic pain increased the activity of DRN glutamatergic, but not serotonergic, neurons projecting to the ventral tegmental area (VTA) (DRNGlu-VTA) in male mice. The optogenetic activation of DRNGlu-VTA circuit induced a pain-like response in naive male mice, and its inhibition produced an analgesic effect in male mice with neuropathic pain. Furthermore, we discovered that DRN ascending pathway regulated pain through strengthened excitatory transmission onto the VTA DA neurons projecting to the ventral part of nucleus accumbens medial shell (vNAcMed), thereby activated the mesoaccumbal DA neurons. Correspondingly, optogenetic manipulation of this three-node pathway bilaterally regulated pain behaviors. These findings identified a DRN ascending excitatory pathway that is crucial for pain sensory processing, which can potentially be exploited toward targeting pain disorders.


Asunto(s)
Núcleo Dorsal del Rafe , Área Tegmental Ventral , Ratones , Masculino , Animales , Núcleo Dorsal del Rafe/fisiología , Área Tegmental Ventral/fisiología , Neuronas Dopaminérgicas/fisiología , Núcleo Accumbens , Dolor/metabolismo
2.
Mol Psychiatry ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454083

RESUMEN

Both peripheral and central corticotropin-releasing factor (CRF) systems have been implicated in regulating pain sensation. However, compared with the peripheral, the mechanisms underlying central CRF system in pain modulation have not yet been elucidated, especially at the neural circuit level. The corticoaccumbal circuit, a structure rich in CRF receptors and CRF-positive neurons, plays an important role in behavioral responses to stressors including nociceptive stimuli. The present study was designed to investigate whether and how CRF signaling in this circuit regulated pain sensation under physiological and pathological pain conditions. Our studies employed the viral tracing and circuit-, and cell-specific electrophysiological methods to label the CRF-containing circuit from the medial prefrontal cortex to the nucleus accumbens shell (mPFCCRF-NAcS) and record its neuronal propriety. Combining optogenetic and chemogenetic manipulation, neuropharmacological methods, and behavioral tests, we were able to precisely manipulate this circuit and depict its role in regulation of pain sensation. The current study found that the CRF signaling in the NAc shell (NAcS), but not NAc core, was necessary and sufficient for the regulation of pain sensation under physiological and pathological pain conditions. This process was involved in the CRF-mediated enhancement of excitatory synaptic transmission in the NAcS. Furthermore, we demonstrated that the mPFCCRF neurons monosynaptically connected with the NAcS neurons. Chronic pain increased the protein level of CRF in NAcS, and then maintained the persistent NAcS neuronal hyperactivity through enhancement of this monosynaptic excitatory connection, and thus sustained chronic pain behavior. These findings reveal a novel cell- and circuit-based mechanistic link between chronic pain and the mPFCCRF → NAcS circuit and provide a potential new therapeutic target for chronic pain.

3.
J Neurosci ; 43(24): 4525-4540, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37188517

RESUMEN

Our recent study demonstrated the critical role of the mesolimbic dopamine (DA) circuit and its brain-derived neurotropic factor (BDNF) signaling in mediating neuropathic pain. The present study aims to investigate the functional role of GABAergic inputs from the lateral hypothalamus (LH) to the ventral tegmental area (VTA; LHGABA→VTA) in regulating the mesolimbic DA circuit and its BDNF signaling underlying physiological and pathologic pain. We demonstrated that optogenetic manipulation of the LHGABA→VTA projection bidirectionally regulated pain sensation in naive male mice. Optogenetic inhibition of this projection generated an analgesic effect in mice with pathologic pain induced by chronic constrictive injury (CCI) of the sciatic nerve and persistent inflammatory pain by complete Freund's adjuvant (CFA). Trans-synaptic viral tracing revealed a monosynaptic connection between LH GABAergic neurons and VTA GABAergic neurons. Functionally, in vivo calcium/neurotransmitter imaging showed an increased DA neuronal activity, decreased GABAergic neuronal activity in the VTA, and increased dopamine release in the NAc, in response to optogenetic activation of the LHGABA→VTA projection. Furthermore, repeated activation of the LHGABA→VTA projection was sufficient to increase the expression of mesolimbic BDNF protein, an effect seen in mice with neuropathic pain. Inhibition of this circuit induced a decrease in mesolimbic BDNF expression in CCI mice. Interestingly, the pain behaviors induced by activation of the LHGABA→VTA projection could be prevented by pretreatment with intra-NAc administration of ANA-12, a TrkB receptor antagonist. These results demonstrated that LHGABA→VTA projection regulated pain sensation by targeting local GABAergic interneurons to disinhibit the mesolimbic DA circuit and regulating accumbal BDNF release.SIGNIFICANCE STATEMENT The mesolimbic dopamine (DA) system and its brain-derived neurotropic factor (BDNF) signaling have been implicated in pain regulation, however, underlying mechanisms remain poorly understood. The lateral hypothalamus (LH) sends different afferent fibers into and strongly influences the function of mesolimbic DA system. Here, utilizing cell type- and projection-specific viral tracing, optogenetics, in vivo calcium and neurotransmitter imaging, our current study identified the LHGABA→VTA projection as a novel neural circuit for pain regulation, possibly by targeting the VTA GABA-ergic neurons to disinhibit mesolimbic pathway-specific DA release and BDNF signaling. This study provides a better understanding of the role of the LH and mesolimbic DA system in physiological and pathological pain.


Asunto(s)
Dopamina , Neuralgia , Ratones , Masculino , Animales , Dopamina/metabolismo , Área Hipotalámica Lateral/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Área Tegmental Ventral/fisiología , Neuronas GABAérgicas/fisiología , Ácido gamma-Aminobutírico/metabolismo , Neuralgia/metabolismo , Sensación , Núcleo Accumbens/fisiología
4.
Opt Express ; 32(7): 11123-11133, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570968

RESUMEN

In this paper, the principles of spectral data cube reconstruction based on an integral field snapshot imaging spectrometer and GPU-based acceleration are presented. The primary focus is on improving the reconstruction algorithm using GPU parallel computing technology to enhance the computational efficiency for real-time applications. And the computational tasks of the spectral reconstruction algorithm were transferred to the GPU through program parallelization and memory optimization, resulting in significant performance gains. Experimental results indicate that the average processing time of the GPU-based parallel algorithm is approximately 29.43 ms, showing a substantial acceleration ratio of about 14.27 compared to the traditional CPU serial algorithm with an average processing time of around 420.46 ms. The study aims to refine the GPU parallelization algorithm for continued improvement in computational efficiency and overall performance. The anticipated applications of this research include providing crucial technical support for the perception and monitoring of crop growth traits in agricultural production, contributing to the modernization and advancement of intelligence in the field.

5.
Pharmacol Res ; 191: 106776, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37084858

RESUMEN

The paucity of medications with novel mechanisms for pain treatment combined with the severe adverse effects of opioid analgesics has led to an imperative pursuit of non-opioid analgesia and a better understanding of pain mechanisms. Here, we identify the putative glutamatergic inputs from the paraventricular thalamic nucleus to the nucleus accumbens (PVTGlut→NAc) as a novel neural circuit for pain sensation and non-opioid analgesia. Our in vivo fiber photometry and in vitro electrophysiology experiments found that PVTGlut→NAc neuronal activity increased in response to acute thermal/mechanical stimuli and persistent inflammatory pain. Direct optogenetic activation of these neurons in the PVT or their terminals in the NAc induced pain-like behaviors. Conversely, inhibition of PVTGlut→NAc neurons or their NAc terminals exhibited a potent analgesic effect in both naïve and pathological pain mice, which could not be prevented by pretreatment of naloxone, an opioid receptor antagonist. Anterograde trans-synaptic optogenetic experiments consistently demonstrated that the PVTGlut→NAc circuit bi-directionally modulates pain behaviors. Furthermore, circuit-specific molecular profiling and pharmacological studies revealed dopamine receptor 3 as a candidate target for pain modulation and non-opioid analgesic development. Taken together, these findings provide a previously unknown neural circuit for pain sensation and non-opioid analgesia and a valuable molecular target for developing future safer medication.


Asunto(s)
Analgesia , Analgésicos no Narcóticos , Ratones , Animales , Núcleos Talámicos de la Línea Media , Núcleo Accumbens/fisiología , Dolor/tratamiento farmacológico
6.
Br J Anaesth ; 130(4): 446-458, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36737387

RESUMEN

BACKGROUND: Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS: With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS: PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS: CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.


Asunto(s)
Anestesia , Isoflurano , Ratones , Animales , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Isoflurano/farmacología , Hipotálamo/metabolismo
7.
J Neurosci ; 41(48): 9988-10003, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34642215

RESUMEN

Long-term limb nerve injury often leads to mirror-image pain (MIP), an abnormal pain sensation in the limb contralateral to the injury. Although it is clear that MIP is mediated in part by central nociception processing, the underlying mechanisms remain poorly understood. The anterior cingulate cortex (ACC) is a key brain region that receives relayed peripheral nociceptive information from the contralateral limb. In this study, we induced MIP in male mice, in which a unilateral chronic constrictive injury of the sciatic nerve (CCI) induced a decreased nociceptive threshold in both hind limbs and an increased number of c-Fos-expressing neurons in the ACC both contralateral and ipsilateral to the injured limb. Using viral-mediated projection mapping, we observed that a portion of ACC neurons formed monosynaptic connections with contralateral ACC neurons. Furthermore, the number of cross-callosal projection ACC neurons that exhibited c-Fos signal was increased in MIP-expressing mice, suggesting enhanced transmission between ACC neurons of the two hemispheres. Moreover, selective inhibition of the cross-callosal projection ACC neurons contralateral to the injured limb normalized the nociceptive sensation of the uninjured limb without affecting the increased nociceptive sensation of the injured limb in CCI mice. In contrast, inhibition of the non-cross-callosal projection ACC neurons contralateral to the injury normalized the nociceptive sensation of the injured limb without affecting the MIP exhibited in the uninjured limb. These results reveal a circuit mechanism, namely, the cross-callosal projection of ACC between two hemispheres, that contributes to MIP and possibly other forms of contralateral migration of pain sensation.SIGNIFICANCE STATEMENT Mirror-image pain (MIP) refers to the increased pain sensitivity of the contralateral body part in patients with chronic pain. This pathology requires central processing, yet the mechanisms are less known. Here, we demonstrate that the cross-callosal projection neurons in the anterior cingulate cortex (ACC) contralateral to the injury contribute to MIP exhibited in the uninjured limb, but do not affect nociceptive sensation of the injured limb. In contrast, the non-cross-callosal projection neurons in the ACC contralateral to the injury contribute to nociceptive sensation of the injured limb, but do not affect MIP exhibited in the uninjured limb. Our study depicts a novel cross-callosal projection of ACC that contributes to MIP, providing a central mechanism for MIP in chronic pain state.


Asunto(s)
Lateralidad Funcional/fisiología , Giro del Cíngulo/fisiopatología , Neuralgia/fisiopatología , Traumatismos de los Nervios Periféricos/fisiopatología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/etiología
8.
Anesthesiology ; 135(3): 463-481, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259824

RESUMEN

BACKGROUND: The γ-aminobutyric acid-mediated (GABAergic) inhibitory system in the brain is critical for regulation of sleep-wake and general anesthesia. The lateral septum contains mainly GABAergic neurons, being cytoarchitectonically divided into the dorsal, intermediate, and ventral parts. This study hypothesized that GABAergic neurons of the lateral septum participate in the control of wakefulness and promote recovery from anesthesia. METHODS: By employing fiber photometry, chemogenetic and optogenetic neuronal manipulations, anterograde tracing, in vivo electrophysiology, and electroencephalogram/electromyography recordings in adult male mice, the authors measured the role of lateral septum GABAergic neurons to the control of sleep-wake transition and anesthesia emergence and the corresponding neuron circuits in arousal and emergence control. RESULTS: The GABAergic neurons of the lateral septum exhibited high activities during the awake state by in vivo fiber photometry recordings (awake vs. non-rapid eye movement sleep: 3.3 ± 1.4% vs. -1.3 ± 1.2%, P < 0.001, n = 7 mice/group; awake vs. anesthesia: 2.6 ± 1.2% vs. -1.3 ± 0.8%, P < 0.001, n = 7 mice/group). Using chemogenetic stimulation of lateral septum GABAergic neurons resulted in a 100.5% increase in wakefulness and a 51.2% reduction in non-rapid eye movement sleep. Optogenetic activation of these GABAergic neurons promoted wakefulness from sleep (median [25th, 75th percentiles]: 153.0 [115.9, 179.7] s to 4.0 [3.4, 4.6] s, P = 0.009, n = 5 mice/group) and accelerated emergence from isoflurane anesthesia (514.4 ± 122.2 s vs. 226.5 ± 53.3 s, P < 0.001, n = 8 mice/group). Furthermore, the authors demonstrated that the lateral septum GABAergic neurons send 70.7% (228 of 323 cells) of monosynaptic projections to the ventral tegmental area GABAergic neurons, preferentially inhibiting their activities and thus regulating wakefulness and isoflurane anesthesia depth. CONCLUSIONS: The results uncover a fundamental role of the lateral septum GABAergic neurons and their circuit in maintaining awake state and promoting general anesthesia emergence time.


Asunto(s)
Anestesia/métodos , Neuronas GABAérgicas/fisiología , Núcleos Septales/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Neuronas GABAérgicas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Núcleos Septales/química
9.
Cell Tissue Bank ; 21(4): 631-641, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32809089

RESUMEN

Peripheral blood mononuclear cells are widely used as source material for anticancer immunotherapies. The conventional cryopreservation method for peripheral blood mononuclear cells is time-consuming and expansive, which involves controlled rate freezing followed by storage in liquid nitrogen. Instead, the convenient uncontrolled rate freezing cryopreservation method had been reported successfully in peripheral blood hematopoietic stem cells and peripheral blood progenitor cells. Therefore, we hypothesized that uncontrolled rate freezing cooling method maybe also applied to peripheral blood mononuclear cells cryopreservation. In this study, we evaluated the performance of uncontrolled rate freezing and controlled rate freezing cooling methods through cell recovery rate, viability, differentiation potential into cytokine-induced killer cells and the cellular properties of the cultured cytokine-induced killer cells. The results showed similar post-thaw viability and recovery rate in both controlled rate freezing and uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells. Importantly, the uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells exhibited higher growth ratio and earlier cell clustering during ex-vivo cytokine-induced killer cell culture than the controlled rate freezing ones. These two groups of expanded cytokine-induced killer cells also exhibited similar effector cell subset ratio and tumoricidal activity. In general, the performance of cryopreserved peripheral blood mononuclear cells using uncontrolled rate freezing cooling method, with the commercial cryoprotective agent CellBanker 2, was equal or better than the controlled rate freezing method. Our study implied that the combined use of cryoprotective agent CellBanker 2 and uncontrolled rate freezing could be a convenient cryopreservation method for peripheral blood mononuclear cells.


Asunto(s)
Criopreservación , Congelación , Leucocitos Mononucleares/citología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Crioprotectores/farmacología , Células Asesinas Inducidas por Citocinas/efectos de los fármacos , Humanos , Inmunofenotipificación , Leucocitos Mononucleares/efectos de los fármacos , Neoplasias/patología
10.
Cryobiology ; 86: 25-32, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30629948

RESUMEN

In this study, we compared three commercially available and two widely used CPAs for their ability of cryopreserving PBMCs. Similar survival (81.0%) and recovery rate (73.7%) were observed among cells using these five CPAs. However, all the cryopreserved PBMCs exhibited a significantly lower survival rate when compared with the fresh samples (94.3%). We further evaluated effector cell subpopulation and tumoricidal activity of PBMC-derived cytokine-induced killing (CIK) cells and natural killing (NK) cells. Similar and high survival (CIK: 88.6%; NK: 87.5%) and recovery (CIK: 99.5%; NK: 99.7%) rates were detected in CIK and NK cells prepared from cryopreserved PBMCs using the five CPAs. The CD3+CD56+ effector percentage (27.3%) of cryopreserved PBMC-derived CIK cells using the five different CPAs and their tumoricidal activities on melanoma CHL-1 cells (45.7%) and bladder cancer cell line T-24 (44.7%) were similar but significantly lower than those of the fresh PBMC-derived controls (effector: 30.7%; CHL-1: 84.2%; T-24: 82.2%). Cryopreserved PBMC-derived NK cells also exhibited similar tumoricidal activities (CHL-1: 73.8%; T-24: 71.9%) but was significantly lower than that of the fresh control group. We were not able to identify a specific CPA that performed superior than others in PBMC cryopreservation.


Asunto(s)
Criopreservación/métodos , Crioprotectores/farmacología , Células Asesinas Inducidas por Citocinas/inmunología , Células Asesinas Naturales/inmunología , Melanoma/inmunología , Neoplasias de la Vejiga Urinaria/inmunología , Línea Celular Tumoral , Humanos , Leucocitos Mononucleares/citología , Soluciones
11.
Genesis ; 55(3)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28109039

RESUMEN

In gnathostomes, dorsoventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches is crucial for the development of hinged jaws. One of the key signals that mediate this process is Endothelin-1 (EDN1). Loss of EDN1 binding to the Endothelin-A receptor (EDNRA) results in loss of EDNRA signaling and subsequent facial birth defects in humans, mice and zebrafish. A rate-limiting step in this crucial signaling pathway is the conversion of immature EDN1 into a mature active form by Endothelin converting enzyme-1 (ECE1). However, surprisingly little is known about how Ece1 transcription is induced or regulated. We show here that Nkx2.5 is required for proper craniofacial development in zebrafish and acts in part by upregulating ece1 expression. Disruption of nkx2.5 in zebrafish embryos results in defects in both ventral and dorsal pharyngeal arch-derived elements, with changes in ventral arch gene expression consistent with a disruption in Ednra signaling. ece1 mRNA rescues the nkx2.5 morphant phenotype, indicating that Nkx2.5 functions through modulating Ece1 expression or function. These studies illustrate a new function for Nkx2.5 in embryonic development and provide new avenues with which to pursue potential mechanisms underlying human facial disorders.


Asunto(s)
Enzimas Convertidoras de Endotelina/genética , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5/genética , Cresta Neural/metabolismo , Proteínas de Pez Cebra/genética , Animales , Enzimas Convertidoras de Endotelina/metabolismo , Proteína Homeótica Nkx-2.5/metabolismo , Ratones , Cresta Neural/embriología , Faringe/embriología , Faringe/metabolismo , Regulación hacia Arriba , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
J Neurosci ; 36(9): 2769-81, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26937014

RESUMEN

DNA 5-hydroxylmethylcytosine (5hmC) catalyzed by ten-eleven translocation methylcytosine dioxygenase (TET) occurs abundantly in neurons of mammals. However, the in vivo causal link between TET dysregulation and nociceptive modulation has not been established. Here, we found that spinal TET1 and TET3 were significantly increased in the model of formalin-induced acute inflammatory pain, which was accompanied with the augment of genome-wide 5hmC content in spinal cord. Knockdown of spinal TET1 or TET3 alleviated the formalin-induced nociceptive behavior and overexpression of spinal TET1 or TET3 in naive mice produced pain-like behavior as evidenced by decreased thermal pain threshold. Furthermore, we found that TET1 or TET3 regulated the nociceptive behavior by targeting microRNA-365-3p (miR-365-3p). Formalin increased 5hmC in the miR-365-3p promoter, which was inhibited by knockdown of TET1 or TET3 and mimicked by overexpression of TET1 or TET3 in naive mice. Nociceptive behavior induced by formalin or overexpression of spinal TET1 or TET3 could be prevented by downregulation of miR-365-3p, and mimicked by overexpression of spinal miR-365-3p. Finally, we demonstrated that a potassium channel, voltage-gated eag-related subfamily H member 2 (Kcnh2), validated as a target of miR-365-3p, played a critical role in nociceptive modulation by spinal TET or miR-365-3p. Together, we concluded that TET-mediated hydroxymethylation of miR-365-3p regulates nociceptive behavior via Kcnh2. SIGNIFICANCE STATEMENT: Mounting evidence indicates that epigenetic modifications in the nociceptive pathway contribute to pain processes and analgesia response. Here, we found that the increase of 5hmC content mediated by TET1 or TET3 in miR-365-3p promoter in the spinal cord is involved in nociceptive modulation through targeting a potassium channel, Kcnh2. Our study reveals a new epigenetic mechanism underlying nociceptive information processing, which may be a novel target for development of antinociceptive drugs.


Asunto(s)
Citosina/análogos & derivados , Metilación de ADN/genética , MicroARNs/metabolismo , Dolor/fisiopatología , 5-Metilcitosina/análogos & derivados , Animales , Citosina/metabolismo , Metilación de ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Epigénesis Genética , Formaldehído/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos , MicroARNs/genética , Dolor/inducido químicamente , Dolor/patología , Fosfopiruvato Hidratasa/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Médula Espinal/metabolismo , Factores de Tiempo
13.
Anesthesiology ; 127(3): 548-564, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28582325

RESUMEN

BACKGROUND: The authors previously reported that noncoding microRNA miR-219-5p is down-regulated in the spinal cord in a nociceptive state. The ventral tegmental area also plays critical roles in modulating nociception, although the underlying mechanism remains unknown. The authors hypothesized that miR-219-5p in the ventral tegmental area also may modulate nociception. METHODS: The authors studied the bidirectional regulatory role of ventral tegmental area miR-219-5p in a rat complete Freund's adjuvant model of inflammatory nociception by measuring paw withdrawal latencies. Using molecular biology technologies, the authors measured the effects of astroglial coiled-coil and C2 domain containing 1A/nuclear factor κB cascade and dopamine neuron activity on the down-regulation of ventral tegmental area miR-219-5p-induced nociceptive responses. RESULTS: MiR-219-5p expression in the ventral tegmental area was reduced in rats with thermal hyperalgesia. Viral overexpression of ventral tegmental area miR-219-5p attenuated complete Freund's adjuvant-induced nociception from 7 days after complete Freund's adjuvant injection (paw withdrawal latencies: 6.09 ± 0.83 s vs. 3.96 ± 0.76 s; n = 6/group). Down-regulation of ventral tegmental area miR-219-5p in naïve rats was sufficient to induce thermal hyperalgesia from 7 days after lentivirus injection (paw withdrawal latencies: 7.09 ± 1.54 s vs. 11.75 ± 2.15 s; n = 8/group), which was accompanied by increased glial fibrillary acidic protein (fold change: 2.81 ± 0.38; n = 3/group) and reversed by intraventral tegmental area injection of the astroglial inhibitor fluorocitrate. The nociceptive responses induced by astroglial miR-219-5p down-regulation were inhibited by interfering with astroglial coiled-coil and C2 domain containing 1A/nuclear factor-κB signaling. Finally, pharmacologic inhibition of ventral tegmental area dopamine neurons alleviated this hyperalgesia. CONCLUSIONS: Down-regulation of astroglial miR-219-5p in ventral tegmental area induced nociceptive responses are mediated by astroglial coiled-coil and C2 domain containing 1A/nuclear factor-κB signaling and elevated dopamine neuron activity.


Asunto(s)
Astrocitos/metabolismo , Hiperalgesia/fisiopatología , MicroARNs/metabolismo , Nocicepción/fisiología , Área Tegmental Ventral/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Masculino , Ratas , Ratas Wistar , Transducción de Señal/fisiología
14.
J Neurosci ; 35(1): 36-52, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568101

RESUMEN

Chronic pain is still a basic science and clinical challenge. Unraveling of the neurobiological mechanisms involved in chronic pain will offer novel targets for the development of therapeutic strategies. It is well known that central sensitization in the anterior cingulate cortex (ACC) plays a critical role in initiation, development, and maintenance of chronic pain. However, the underlying mechanisms still remain elusive. Here, we reported that caveolin-1 (Cav-1), a scaffolding protein in membrane rafts, was persistently upregulated and activated in the ACC neurons after chronic constriction injury (CCI) in mice. Knockdown or blocking of Cav-1 in the contralateral ACC to the injury side reversed CCI-induced pain behavioral and neuronal sensitization and overexpression of Cav-1 in the ipsilateral ACC-induced pain behavior in the unaffected hindpaw. Furthermore, we found that Cav-1 directly binding with NMDA receptor 2B subunit (NR2B) and promotion of NR2B surface levels in the ACC contributed to modulation of chronic neuropathic pain. Disrupting the interaction of Cav-1 and NR2B through microinjection of a short peptide derived from the C-terminal of NR2B into the ACC exhibited a significant anti-nociception effect associated with decrease of surface NR2B expression. Moreover, Cav-1 increased intracellular Ca(2+) concentration and activated the ERK/CREB signaling pathway in an NR2B-dependent manner in the ACC. Our findings implicate that Cav-1 in the ACC neurons modulates chronic neuropathic pain via regulation of NR2B and subsequent activation of ERK/CREB signaling, suggesting a possible caveolin-mediated process would participate in neuronal transmission pathways implicated in pain modulation.


Asunto(s)
Caveolina 1/fisiología , Dolor Crónico/metabolismo , Giro del Cíngulo/metabolismo , Neuralgia/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Dolor Crónico/patología , Técnicas de Silenciamiento del Gen , Giro del Cíngulo/patología , Células HEK293 , Humanos , Masculino , Ratones , Neuralgia/patología
15.
Genesis ; 53(3-4): 270-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25810090

RESUMEN

Cranial neural crest cells are specified and migrate into the pharyngeal arches where they subsequently interact with the surrounding environment. Signaling and transcription factors, such as prdm1a regulate this interaction, but it remains unclear which specific factors are required for posterior pharyngeal arch development. Previous analysis suggests that prdm1a is required for posterior ceratobranchial cartilages in zebrafish and microarray analysis between wildtype and prdm1a mutants at 25 h post fertilization demonstrated that integrin α5 (itga5) is differentially expressed in prdm1a mutants. Here, we further investigate the interaction between prdm1a and itga5 in zebrafish craniofacial development. In situ hybridization for itga5 demonstrates that expression of itga5 is decreased in prdm1a mutants between 18 and 31 h post fertilization and itga5 expression overlaps with prdm1a in the posterior arches, suggesting a temporal window for interaction. Double mutants for prdm1a;itga5 have an additive viscerocranium phenotype more similar to prdm1a mutants, suggesting that prdm1a acts upstream of itga5. Consistent with this, loss of posterior pharyngeal arch expression of dlx2a, ceratobranchial cartilages 2-5, and cell proliferation in prdm1a mutants can be rescued with itga5 mRNA injection. Taken together, these data suggest that prdm1a acts upstream of itga5 and are both necessary for posterior pharyngeal arch development in zebrafish.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero/metabolismo , Cara/embriología , Regulación del Desarrollo de la Expresión Génica , Integrina alfa5/metabolismo , Proteínas Nucleares/metabolismo , Cráneo/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Embrión no Mamífero/citología , Cara/fisiología , Hibridación in Situ , Integrina alfa5/genética , Mutación/genética , Proteínas Nucleares/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Cráneo/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
16.
Dev Dyn ; 242(1): 67-79, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23109401

RESUMEN

BACKGROUND: PRDM proteins are evolutionary conserved Zn-Finger transcription factors that share a characteristic protein domain organization. Previous studies have shown that prdm1a is required for the specification and differentiation of neural crest cells in the zebrafish. RESULTS: Here we examine other members of this family, specifically prdm3, 5, and 16, in the differentiation of the zebrafish craniofacial skeleton. prdm3 and prdm16 are strongly expressed in the pharyngeal arches, while prdm5 is expressed specifically in the area of the forming neurocranium. Knockdown of prdm3 and prdm16 results in a reduction in the neural crest markers dlx2a and barx1 and defects in both the viscerocranium and the neurocranium. The knockdown of prdm3 and prdm16 in combination is additive in the neurocranium, but not in the viscerocranium. Injection of sub-optimal doses of prdm1a with prdm3 or prdm16 Morpholinos together leads to more severe phenotypes in the viscerocranium and neurocranium. prdm5 mutants have defects in the neurocranium and prdm1a and prdm5 double mutants also show more severe phenotypes. CONCLUSIONS: Overall, our data reveal that prdm3, 5, and 16 are involved in the zebrafish craniofacial development and that prdm1a may interact with prdm3, 5, and 16 in the formation of the craniofacial skeleton in zebrafish.


Asunto(s)
Cara/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Familia de Multigenes/genética , Cráneo/embriología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Cartilla de ADN/genética , Genotipo , Procesamiento de Imagen Asistido por Computador , Hibridación in Situ , Morfolinos/genética , Cresta Neural/citología , Cresta Neural/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Proteínas de Pez Cebra/genética
17.
Nat Commun ; 14(1): 4700, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543693

RESUMEN

A comorbidity of chronic pain is sleep disturbance. Here, we identify a dual-functional ensemble that regulates both pain-like behaviour induced by chronic constrictive injury or complete Freund's adjuvant, and sleep wakefulness, in the nucleus accumbens (NAc) in mice. Specifically, a select population of NAc neurons exhibits increased activity either upon nociceptive stimulation or during wakefulness. Experimental activation of the ensemble neurons exacerbates pain-like (nociceptive) responses and reduces NREM sleep, while inactivation of these neurons produces the opposite effects. Furthermore, NAc ensemble primarily consists of D1 neurons and projects divergently to the ventral tegmental area (VTA) and preoptic area (POA). Silencing an ensemble innervating VTA neurons selectively increases nociceptive responses without affecting sleep, whereas inhibiting ensemble-innervating POA neurons decreases NREM sleep without affecting nociception. These results suggest a common NAc ensemble that encodes chronic pain and controls sleep, and achieves the modality specificity through its divergent downstream circuit targets.


Asunto(s)
Dolor Crónico , Núcleo Accumbens , Ratones , Animales , Núcleo Accumbens/fisiología , Área Tegmental Ventral/fisiología , Neuronas , Sueño/fisiología
18.
Front Pharmacol ; 13: 1050847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506515

RESUMEN

Sufentanil, a potent opioid, serves as the first option for perioperative analgesia owing to its analgesic effect, long duration and stable hemodynamics, whereas its side effects frequently blunt its application. The intravenous (IV) injection of sufentanil during anesthesia induction has high incidence of choking or bucking reaction, which is defined as sufentanil-induced cough (SIC). Moreover, postoperative nausea and vomiting (PONV) is a common and stressful complication, which is also related to the usage of opioid. High incidence of PONV is reported in the patients with SIC. Hence, we sought to determine whether naloxone, an opioid antagonist, at low dose would decrease the incidences of SIC and PONV. 216 female patients undergoing gynecological laparoscopic operation (<2 h) under general anesthesia were recruited in this study, and randomly assigned into two groups: Group N (patients receiving naloxone and Group C (patients receiving vehicle). Sufentanil (0.5 µg/kg within 5 s) was given in anesthesia induction, and low-dose naloxone (1.25 µg/kg) or identical vehicle was initially injected 5 min prior to induction, with the incidence and severity of SIC estimated. Subsequently, naloxone or vehicle was continuously infused at the rate of 0.5 µg/kg/h in the initiation of operation until the end of the operation, and the transverse abdominal fascia block (TAP) was performed for postoperative analgesia. The PONV profiles such as incidence and the severity, grading, and the frequencies of antiemetic usage within 24 h were evaluated, with VAS scores and remedial measures for analgesia during the first 24 h postoperatively were recorded. Our results revealed that one bolus of low-dose naloxone prior to the induction significantly mitigated the incidence of SIC, and intraoperative continuous infusion of low-dose naloxone reduced the incidence and the severity of PONV, so that the postoperative VAS scores and further remedial analgesia were not altered. These results not only provide clinical solutions for prophylaxis of SIC and PONV, but also suggests that opioids may act as a key role in both SIC and PONV, whereas opioid antagonist may hit two tasks with one stone. Moreover, further investigations are required to address the underlying mechanism of SIC and PONV. Clinical Trial Registration: [www.chictr.org.cn], identifier [ChiCTR2200064865].

19.
Curr Biol ; 31(7): 1379-1392.e4, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33545041

RESUMEN

The medial septum (MS) is involved in arousal-based behaviors and modulates general anesthesia response. However, the role of MS in wakefulness control remains unknown. Here, combining double fluorescence in situ hybridization and optrode recording, we showed that MS glutamatergic neurons exhibited higher activities preferentially during wakefulness. Activating these neurons, either optogenetically or chemogenetically, strongly promoted wakefulness, mainly through the transition from non-rapid eye movement (NREM) sleep to wakefulness. In contrast, inactivation of these neurons reduced wakefulness by the transition from wakefulness to NREM sleep. Furthermore, both rabies-mediated monosynaptic retrograde and anterograde tracing showed that MS glutamatergic neurons monosynaptically innervated lateral hypothalamus (LH) glutamatergic neurons, which were also wake-active as well as wake-promoting. Activating MS-derived glutamatergic terminals in LH enhanced wakefulness, whereas silencing MS glutamatergic neurons destabilized the wake-active preference of LH glutamatergic neurons. These results reveal a vital role of MS glutamatergic neurons in wakefulness control and depict a novel septo-hypothalamic circuit for wakefulness.


Asunto(s)
Ácido Glutámico/metabolismo , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas , Neuronas/metabolismo , Vigilia , Animales , Hibridación Fluorescente in Situ , Masculino , Ratones , Sueño
20.
Front Pharmacol ; 12: 740012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646140

RESUMEN

The same doses of anesthesia may yield varying depths of anesthesia in different patients. Clinical studies have revealed a possible causal relationship between deep anesthesia and negative short- and long-term patient outcomes. However, a reliable index and method of the clinical monitoring of deep anesthesia and detecting latency remain lacking. As burst-suppression is a characteristic phenomenon of deep anesthesia, the present study investigated the relationship between burst-suppression latency (BSL) and the subsequent burst-suppression ratio (BSR) to find an improved detection for the onset of intraoperative deep anesthesia. The mice were divided young, adult and old group treated with 1.0% or 1.5% isoflurane anesthesia alone for 2 h. In addition, the adult mice were pretreated with intraperitoneal injection of ketamine, dexmedetomidine, midazolam or propofol before they were anesthetized by 1.0% isoflurane for 2 h. Continuous frontal, parietal and occipital electroencephalogram (EEG) were acquired during anesthesia. The time from the onset of anesthesia to the first occurrence of burst-suppression was defined as BSL, while BSR was calculated as percentage of burst-suppression time that was spent in suppression periods. Under 1.0% isoflurane anesthesia, we found a negative correlation between BSL and BSR for EEG recordings obtained from the parietal lobes of young mice, from the parietal and occipital lobes of adult mice, and the occipital lobes of old mice. Under 1.5% isoflurane anesthesia, only the BSL calculated from EEG data obtained from the occipital lobe was negatively correlated with BSR in all mice. Furthermore, in adult mice receiving 1.0% isoflurane anesthesia, the co-administration of ketamine and midazolam, but not dexmedetomidine and propofol, significantly decreased BSL and increased BSR. Together, these data suggest that BSL can detect burst-suppression and predict the subsequent BSR under isoflurane anesthesia used alone or in combination with anesthetics or adjuvant drugs. Furthermore, the consistent negative correlation between BSL and BSR calculated from occipital EEG recordings recommends it as the optimal position for monitoring burst-suppression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA