Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474179

RESUMEN

Ischemic stroke is associated with a high mortality rate, and effective treatment strategies are currently lacking. In this study, we aimed to develop a novel nano delivery system to treat ischemic stroke via intranasal administration. A three-factor Box-Behnken experimental design was used to optimize the formulation of liposomes co-loaded with Panax notoginseng saponins (PNSs) and Ginsenoside Rg3 (Rg3) (Lip-Rg3/PNS). Macrophage membranes were coated onto the surface of the optimized liposomes to target the ischemic site of the brain. The double-loaded liposomes disguised by macrophage membranes (MM-Lip-Rg3/PNS) were spherical, in a "shell-core" structure, with encapsulation rates of 81.41% (PNS) and 93.81% (Rg3), and showed good stability. In vitro, MM-Lip-Rg3/PNS was taken up by brain endothelial cells via the clathrin-dependent endocytosis and micropinocytosis pathways. Network pharmacology experiments predicted that MM-Lip-Rg3/PNS could regulate multiple signaling pathways and treat ischemic stroke by reducing apoptosis and inflammatory responses. After 14 days of treatment with MM-Lip-Rg3/PNS, the survival rate, weight, and neurological score of middle cerebral artery occlusion (MCAO) rats significantly improved. The hematoxylin and eosin (H&E) and TUNEL staining results showed that MM-Lip-Rg3/PNS can reduce neuronal apoptosis and inflammatory cell infiltration and protect the ischemic brain. In vivo biological experiments have shown that free Rg3, PNS, and MM-Lip-Rg3/PNS can alleviate inflammation and apoptosis, especially MM-Lip-Rg3/PNS, indicating that biomimetic liposomes can improve the therapeutic effects of drugs. Overall, MM-Lip-Rg3/PNS is a potential biomimetic nano targeted formulation for ischemic stroke therapy.


Asunto(s)
Accidente Cerebrovascular Isquémico , Saponinas , Ratas , Animales , Liposomas/química , Células Endoteliales , Administración Intranasal , Saponinas/farmacología , Macrófagos
2.
Org Lett ; 26(25): 5295-5299, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38874590

RESUMEN

Rh(III)-catalyzed direct oxidative C-H/C-H cross-coupling between N-pyrimidylindoles and ß-ketoesters is presented. Easily available ß-ketoesters are used as an alkylating agent for the facile construction of all-carbon quaternary centers under mild conditions. The ester group in the product can undergo decarboxylation or decarboxylative amination.

3.
Anal Sci ; 40(7): 1349-1356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38683477

RESUMEN

Based on the automatic light wave ashing instrument, palladium nitrate was used as an ashing aid for the first time to collect selenium in the process of food ashing pre-treatment, and a method for the determination of selenium in food by ashing method was established with inductively coupled plasma mass spectrometry. At the same time, the effects of magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids on selenium collection were investigated using certified plant standard materials. The capture of selenium by magnesium nitrate, rhodium nitrate, and nickel nitrate as ashing aids did not exceed 50%. Using palladium nitrate as an ashing aid, six food standard materials were measured, with selenium recovery rates ranging from 97 to 106%. A complete analysis cycle can be completed within an hour. The method detection limit of selenium was 0.021 µg g-1, and the relative standard deviation of five measurements was less than 7%. The experimental results show that palladium nitrate is an excellent ashing aid for capturing selenium, and it is far superior to the other three aids. In addition, the mechanism of palladium nitrate as an ashing aid for capturing selenium was discussed.


Asunto(s)
Análisis de los Alimentos , Espectrometría de Masas , Paladio , Selenio , Selenio/análisis , Selenio/química , Paladio/química , Paladio/análisis , Análisis de los Alimentos/métodos , Nitratos/análisis , Nitratos/química , Automatización , Rayos Infrarrojos
4.
Int J Nanomedicine ; 19: 6177-6199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911498

RESUMEN

Purpose: Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods: MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results: Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion: MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.


Asunto(s)
Administración Intranasal , Barrera Hematoencefálica , Ginsenósidos , Accidente Cerebrovascular Isquémico , Liposomas , Macrófagos , Animales , Liposomas/química , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Ratas , Masculino , Ginsenósidos/farmacocinética , Ginsenósidos/química , Ginsenósidos/administración & dosificación , Ginsenósidos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Ratas Sprague-Dawley , Distribución Tisular , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacocinética , Materiales Biomiméticos/administración & dosificación , Saponinas/farmacocinética , Saponinas/química , Saponinas/administración & dosificación , Saponinas/farmacología , Ratones
5.
Materials (Basel) ; 17(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473551

RESUMEN

This study elucidates the thermodynamic reaction mechanism of the GeCl4 hydrogen reduction process for Ge preparation. Five independent reactions in the Ge-Cl-H ternary system were identified, utilizing the phase law, mass conservation principles, and thermodynamic data, with H2 as the reducing agent. Additionally, the effects of the temperature, feed ratio, and pressure on the germanium deposition rate during the GeCl4 hydrogen reduction process were investigated, guided by these five reactions. The results indicate that, with fixed temperature and pressure, a higher feed ratio (nH2/nGeCl4) leads to an increased germanium deposition rate. Conversely, with a constant feed ratio, increased pressure results in a lower deposition rate at low temperatures. The optimal operating conditions for germanium preparation via the hydrogen reduction of GeCl4 were determined: the temperature was 450 °C, the feed ratio was 20, the pressure was 0.1 MPa, and the deposition rate of the germanium was 36.12% under this condition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA