Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 193, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539237

RESUMEN

BACKGROUND: Macrophages release not only cytokines but also extracellular vesicles (EVs). which are small membrane-derived nanovesicles with virus-like properties transferring cellular material between cells. Until now, the consequences of macrophage plasticity on the release and the composition of EVs have been poorly explored. In this study, we determined the impact of high-glucose (HG) concentrations on macrophage metabolism, and characterized their derived-EV subpopulations. Finally, we determined whether HG-treated macrophage-derived EVs participate in immune responses and in metabolic alterations of skeletal muscle cells. METHODS: THP1-macrophages were treated with 15mM (MG15) or 30mM (MG30) glucose. Then, M1/M2 canonical markers, pro- and anti-inflammatory cytokines, activities of proteins involved in glycolysis or oxidative phosphorylation were evaluated. Macrophage-derived EVs were characterized by TEM, NTA, MRSP, and 1H-Nuclear magnetic resonance spectroscopy for lipid composition. Macrophages or C2C12 muscle cells were used as recipients of MG15 and MG30-derived EVs. The lipid profiles of recipient cells were determined, as well as proteins and mRNA levels of relevant genes for macrophage polarization or muscle metabolism. RESULTS: Untreated macrophages released small and large EVs (sEVs, lEVs) with different lipid distributions. Proportionally to the glucose concentration, glycolysis was induced in macrophages, associated to mitochondrial dysfunction, triacylglycerol and cholesterol accumulation. In addition, MG15 and MG30 macrophages had increased level of CD86 and increase release of pro-inflammatory cytokines. HG also affected macrophage sphingolipid and phospholipid compositions. The differences in the lipid profiles between sEVs and lEVs were abolished and reflected the lipid alterations in MG15 and MG30 macrophages. Interestingly, MG15 and MG30 macrophages EVs induced the expression of CD163, Il-10 and increased the contents of triacylglycerol and cholesterol in recipient macrophages. MG15 lEVs and sEVs induced insulin-induced AKT hyper-phosphorylation and accumulation of triacylglycerol in myotubes, a state observed in pre-diabetes. Conversely, MG30 lEVs and sEVs induced insulin-resistance in myotubes. CONCLUSIONS: As inflammation involves first M1 macrophages, then the activation of M2 macrophages to resolve inflammation, this study demonstrates that the dialog between macrophages through the EV route is an intrinsic part of the inflammatory response. In a hyperglycemic context, EV macrophages could participate in the development of muscle insulin-resistance and chronic inflammation.


Asunto(s)
Vesículas Extracelulares , Insulinas , Humanos , Macrófagos/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Vesículas Extracelulares/metabolismo , Lípidos , Homeostasis , Triglicéridos/metabolismo , Colesterol/metabolismo , Insulinas/metabolismo
2.
Phytopathology ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700944

RESUMEN

Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, whereas several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on Chitosan and/or Fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subspecies fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of Chitosan-Coated Fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of olea europaea plants. Additionally, the antibacterial activity of Fosetyl-Al, nano-Fosetyl, nano-chitosan, and Chitosan-Coated Fosetyl-Al nanocrystals (CH-nanoFos) was tested on Nicotiana tabacum cv. SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able of reducing the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the Area Under Disease Progress Curve (AUDPC), used to assess symptoms development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.

3.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892363

RESUMEN

Autophagy plays a key role in removing protein aggregates and damaged organelles. In addition to its conventional degradative functions, autophagy machinery contributes to the release of cytosolic proteins through an unconventional secretion pathway. In this research, we analyzed autophagy-induced extracellular vesicles (EVs) in HT1080-derived human fibrosarcoma 2FTGH cells using transmission electron microscopy and atomic force microscopy (AFM). We preliminary observed that autophagy induces the formation of a subset of large heterogeneous intracellular vesicular structures. Moreover, AFM showed that autophagy triggering led to a more visible smooth cell surface with a reduced amount of plasma membrane protrusions. Next, we characterized EVs secreted by cells following autophagy induction, demonstrating that cells release both plasma membrane-derived microvesicles and exosomes. A self-forming iodixanol gradient was performed for cell subfractionation. Western blot analysis showed that endogenous LC3-II co-fractionated with CD63 and CD81. Then, we analyzed whether raft components are enriched within EV cargoes following autophagy triggering. We observed that the raft marker GD3 and ER marker ERLIN1 co-fractionated with LC3-II; dual staining by immunogold electron microscopy and coimmunoprecipitation revealed GD3-LC3-II association, indicating that autophagy promotes enrichment of raft components within EVs. Introducing a new brick in the crosstalk between autophagy and the endolysosomal system may have important implications for the knowledge of pathogenic mechanisms, suggesting alternative raft target therapies in diseases in which the generation of EV is active.


Asunto(s)
Autofagia , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Línea Celular Tumoral , Microdominios de Membrana/metabolismo , Exosomas/metabolismo , Exosomas/ultraestructura , Tetraspanina 30/metabolismo , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Proteínas Asociadas a Microtúbulos/metabolismo
4.
Adv Exp Med Biol ; 1295: 3-27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33543453

RESUMEN

Clinical responses and tolerability of conventional nanocarriers (NCs) are sometimes different from those expected in anticancer therapy. Thus, new smart drug delivery systems (DDSs) with stimuli-responsive properties and novel materials have been developed. Several clinical trials demonstrated that these DDSs have better clinical therapeutic efficacy in the treatment of many cancers than free drugs. Composition of DDSs and their surface properties increase the specific targeting of therapeutics versus cancer cells, without affecting healthy tissues, and thus limiting their toxicity versus unspecific tissues. Herein, an extensive revision of literature on NCs used as DDSs for cancer applications has been performed using the available bibliographic databases.


Asunto(s)
Nanopartículas , Neoplasias , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico
5.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066354

RESUMEN

All nervous system pathologies (e.g., neurodegenerative/demyelinating diseases and brain tumours) develop neuroinflammation, a beneficial process during pathological events, aimed at removing damaged cells, toxic agents, and/or pathogens. Unfortunately, excessive inflammation frequently occurs during nervous system disorders, becoming a detrimental event capable of enhancing neurons and myelinating glial cell impairment, rather than improving their survival and activity. Consequently, targeting the neuroinflammation could be relevant for reducing brain injury and rescuing neuronal and glial cell functions. Several studies have highlighted the role of acetylcholine and its receptors in the regulation of central and peripheral inflammation. In particular, α7 nicotinic receptor has been described as one of the main regulators of the "brain cholinergic anti-inflammatory pathway". Its expression in astrocytes and microglial cells and the ability to modulate anti-inflammatory cytokines make this receptor a new interesting therapeutic target for neuroinflammation regulation. In this review, we summarize the distribution and physiological functions of the α7 nicotinic receptor in glial cells (astrocytes and microglia) and its role in the modulation of neuroinflammation. Moreover, we explore how its altered expression and function contribute to the development of different neurological pathologies and exacerbate neuroinflammatory processes.


Asunto(s)
Encéfalo/patología , Colinérgicos/metabolismo , Inflamación/metabolismo , Inflamación/patología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Humanos , Neuroglía/metabolismo , Neuroglía/patología , Transducción de Señal , Receptor Nicotínico de Acetilcolina alfa 7/química
6.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171763

RESUMEN

Extracellular vesicles (EVs) are widely investigated in glioblastoma multiforme (GBM) for their involvement in regulating GBM pathobiology as well as for their use as potential biomarkers. EVs, through cell-to-cell communication, can deliver proteins, nucleic acids, and lipids that are able to reprogram tumor-associated macrophages (TAMs). This research is aimed to concentrate, characterize, and identify molecular markers of EVs subtypes released by temozolomide (TMZ)-treated and non TMZ-treated four diverse GBM cells. Morphology, size distribution, and quantity of small (sEVs) and large (lEVs) vesicles were analyzed by cryo-TEM. Quality and quantity of EVs surface markers were evaluated, having been obtained by Western blotting. GBM cells shed a large amount of EVs, showing a cell line dependent molecular profile A comparative analysis distinguished sEVs and lEVs released by temozolomide (TMZ)-treated and non TMZ-treated GBM cells on the basis of quantity, size and markers expression. Finally, the GBM-derived sEVs and lEVs, irrespective of TMZ treatment, when challenged with macrophages, modulated cell activation toward a tendentially M2b-like phenotype.


Asunto(s)
Vesículas Extracelulares/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Temozolomida/farmacología , Línea Celular Tumoral , Microscopía por Crioelectrón/métodos , Resistencia a Antineoplásicos/genética , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , MicroARNs/genética , Temozolomida/metabolismo
7.
Molecules ; 25(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204392

RESUMEN

One of the most relevant drawbacks in medicine is the ability of drugs and/or imaging agents to reach cells. Nanotechnology opened new horizons in drug delivery, and silver nanoparticles (AgNPs) represent a promising delivery vehicle for their adjustable size and shape, high-density surface ligand attachment, etc. AgNPs cellular uptake involves different endocytosis mechanisms, including lipid raft-mediated endocytosis. Since static magnetic fields (SMFs) exposure induces plasma membrane perturbation, including the rearrangement of lipid rafts, we investigated whether SMF could increase the amount of AgNPs able to pass the peripheral blood lymphocytes (PBLs) plasma membrane. To this purpose, the effect of 6-mT SMF exposure on the redistribution of two main lipid raft components (i.e., disialoganglioside GD3, cholesterol) and on AgNPs uptake efficiency was investigated. Results showed that 6 mT SMF: (i) induces a time-dependent GD3 and cholesterol redistribution in plasma membrane lipid rafts and modulates gene expression of ATP-binding cassette transporter A1 (ABCA1), (ii) increases reactive oxygen species (ROS) production and lipid peroxidation, (iii) does not induce cell death and (iv) induces lipid rafts rearrangement, that, in turn, favors the uptake of AgNPs. Thus, it derives that SMF exposure could be exploited to enhance the internalization of NPs-loaded therapeutic or diagnostic molecules.


Asunto(s)
Linfocitos/citología , Microdominios de Membrana/metabolismo , Plata/farmacocinética , Transportador 1 de Casete de Unión a ATP , Adulto , Transporte Biológico , Endocitosis , Femenino , Humanos , Peroxidación de Lípido , Linfocitos/química , Campos Magnéticos , Masculino , Nanopartículas del Metal , Especies Reactivas de Oxígeno/metabolismo , Plata/química
8.
New Microbiol ; 41(2): 145-152, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29498744

RESUMEN

The present study aimed to characterize the behavior of Bdellovibrio bacteriovorus in the presence of Staphylococcus aureus. B. bacteriovorus was co-cultured with S. aureus or Pseudomonas aeruginosa or Streptococcus mutans, in planktonic and sessile conditions. Co-cultures were studied by Field-Emission Scanning Electron Microscopy (FESEM), Scanning Transmission Electron Microscopy (STEM), turbidimetry, quantitative PCR (qPCR), and sequencing of gene Bd0108 of B. bacteriovorus. Results indicated that B. bacteriovorus comparably inhibited planktonic growth of P. aeruginosa and S. aureus, but not of S. mutans. FESEM and STEM showed that B. bacteriovorus interacts with S. aureus affecting its cell wall and membrane. Sequencing of gene Bd0108 did not reveal any of the mutations that can arise from the host-interaction (hit) locus. Although some Gram-negative species are reported to be B. bacteriovorus prey, it seems that in case of nutrient deficiency this predatory bacterium can also take advantage of some Gram-positive species. B. bacteriovorus behaviour in the presence of S. aureus is relevant for its possible therapeutic use in several pathologies, like cystic fibrosis in which S. aureus and P. aeruginosa frequently coexist as infectious agents.


Asunto(s)
Bdellovibrio bacteriovorus/fisiología , Pseudomonas aeruginosa/virología , Staphylococcus aureus/virología , Streptococcus mutans/virología , Técnicas de Cocultivo , Microscopía Electrónica de Rastreo
9.
Int J Mol Sci ; 19(5)2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29702561

RESUMEN

Medicine, food, and cosmetics represent the new promising applications for silver (Ag) and gold (Au) nanoparticles (NPs). AgNPs are most commonly used in food and cosmetics; conversely, the main applications of gold NPs (AuNPs) are in the medical field. Thus, in view of the risk of accidentally or non-intended uptake of NPs deriving from the use of cosmetics, drugs, and food, the study of NPs⁻cell interactions represents a key question that puzzles researchers in both the nanomedicine and nanotoxicology fields. The response of cells starts when the NPs bind to the cell surface or when they are internalized. The amount and modality of their uptake depend on many and diverse parameters, such as NPs and cell types. Here, we discuss the state of the art of the knowledge and the uncertainties regarding the biological consequences of AgNPs and AuNPs, focusing on NPs cell uptake, location, and translocation. Finally, a section will be dedicated to the most currently available methods for qualitative and quantitative analysis of intracellular transport of metal NPs.


Asunto(s)
Endocitosis , Oro/metabolismo , Oro/toxicidad , Plata/metabolismo , Plata/toxicidad , Animales , Transporte Biológico , Cosméticos , Alimentos , Oro/análisis , Oro/química , Humanos , Lisosomas/química , Nanopartículas del Metal/química , Modelos Animales , Nanomedicina , Medicina del Trabajo , Tamaño de la Partícula , Plata/análisis , Plata/química
10.
Int J Mol Sci ; 19(3)2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29509706

RESUMEN

LY2157299 (LY), which is very small molecule bringing high cancer diffusion, is a pathway antagonist against TGFß. LY dosage can be diluted by blood plasma, can be captured by immune system or it might be dissolved during digestion in gastrointestinal tract. The aim of our study is to optimize a "nano-elastic" carrier to avoid acidic pH of gastrointestinal tract, colon alkaline pH, and anti-immune recognition. Polygalacturonic acid (PgA) is not degradable in the gastrointestinal tract due to its insolubility at acidic pH. To avoid PgA solubility in the colon, we have designed its conjugation with Polyacrylic acid (PAA). PgA-PAA conjugation has enhanced their potential use for oral and injected dosage. Following these pre-requisites, novel polymeric nano-micelles derived from PgA-PAA conjugation and loading LY2157299 are developed and characterized. Efficacy, uptake and targeting against a hepatocellular carcinoma cell line (HLF) have also been demonstrated.


Asunto(s)
Antineoplásicos/farmacología , Hepatocitos/metabolismo , Micelas , Nanopartículas/química , Pirazoles/farmacología , Quinolinas/farmacología , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Hepatocitos/efectos de los fármacos , Humanos , Nanopartículas/metabolismo , Pirazoles/administración & dosificación , Quinolinas/administración & dosificación
11.
J Mater Sci Mater Med ; 28(8): 120, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28685231

RESUMEN

TGFß1 pathway antagonists have been considered promising therapies to attenuate TGFß downstream signals in cancer cells. Inhibiting peptides, as P-17 in this study, are bound to either TGFß1 or its receptors, blocking signal transduction. However, for efficient use of these TGFß1antagonist as target therapeutic tools, improvement in their delivery is required. Here, a plasmid carrying specific shDNA (SHT-DNA), small interfering RNA (siRNA), and the peptide (P-17) were loaded separately into folic acid (FA)-functionalized nano-carriers made of Bovine Serum Albumin (BSA). The two building blocks of the carrier, (BSA and FA) were used because of the high affinity of albumin for liver and for the overexpression of folate receptors on the membrane of hepatocellular carcinoma cells. The empty and the encapsulated carriers were thoroughly investigated to characterize their structure, to evaluate the colloidal stability and the surface functionalization. The entrapment of SHT-DNA, siRNA and P-17, respectively, was demonstrated by morphological and quantitative analysis. Finally, cellular studies were performed to assess the targeting efficiency of the hybrid carriers. These vectors were used because of the high affinity of albumin for liver and for the overexpression of folate receptors on the membrane hepatocellular carcinoma cells. The empty and the encapsulated carriers were thoroughly investigated to characterize their structure, to evaluate the colloidal stability and the surface functionalization. The entrapment of SHT-DNA, siRNA and P-17, respectively, was demonstrated by morphological and quantitative analysis. A novel fabrication of Hybrid Polymeric-Protein Nano-Carriers (HPPNC) for delivering TGF ß1 inhibitors to HCC cells has been developed. SHT-DNA, siRNA and P-17 have been successfully encapsulated. TGF ß1 inhibitors-loaded HPPNC were efficiently uptaken by HLF cells.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Portadores de Fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Polímeros/química , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Bovinos , Coloides/química , Sistemas de Liberación de Medicamentos , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/química , Humanos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Péptidos/química , ARN Interferente Pequeño/metabolismo , Albúmina Sérica Bovina , Espectroscopía Infrarroja por Transformada de Fourier
12.
Electromagn Biol Med ; 36(3): 238-247, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27874284

RESUMEN

The impact of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) at various frequencies and amplitudes was investigated on cell cycle, apoptosis and viability of the Glioblastoma Multiforme (GBM) cell line (U87), in vitro. The GBM is a malignant brain tumor with high mortality in humans and poorly responsive to the most common type of cancer treatments, such as surgery, chemotherapy and radiation therapy. U87 cells with five experimental groups (I-V) were exposed to various ELF-PEMFs for 2, 4 and 24 h, as follows: (I) no exposure, control; (II) 50 Hz 100 ± 15 G; (III) 100 Hz 100 ± 15 G; (IV) 10 Hz 50 ± 10 G; (V) 50 Hz 50 ± 10 G. The morphology properties, cell viability and gene expression of proteins involved in cell cycle regulation (Cyclin-D1 and P53) and apoptosis (Caspase-3) were investigated. After 24 h, the cell viability and Cyclin-D1 expression increased in Group II (30%, 45%), whereas they decreased in Groups III (29%, 31%) and IV (21%, 34%); P53 and Caspase-3 elevated only in Group III; and no significant difference was observed in Group V, respectively, compared with the control (p < 0.05). The data suggest that the proliferation and apoptosis of human GBM are influenced by exposure to ELF-PEMFs in different time-dependent frequencies and amplitudes. The fact that some of the ELF-PEMFs frequencies and amplitudes favor U87 cells proliferation indicates precaution for the use of medical devices related to the MFs on cancer patients. On the other hand, some other ELF-PEMFs frequencies and intensities arresting U87 cells growth could open the way to develop novel therapeutic approaches.


Asunto(s)
Campos Electromagnéticos , Glioblastoma , Apoptosis , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , Ciclina D1/metabolismo , Humanos
13.
Langmuir ; 32(5): 1241-9, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26740247

RESUMEN

The use of nanocarriers, which respond to different stimuli controlling their physicochemical properties and biological responsivness, shows a growing interest in pharmaceutical science. The stimuli are activated by targeting tissues and biological compartments, e.g., pH modification, temperature, redox condition, enzymatic activity, or can be physically applied, e.g., a magnetic field and ultrasound. pH modification represents the easiest method of passive targeting, which is actually used to accumulate nanocarriers in cells and tissues. The aim of this paper was to physicochemically characterize pH-sensitive niosomes using different experimental conditions and demonstrate the effect of surfactant composition on the supramolecular structure of niosomes. In this attempt, niosomes, made from commercial (Tween21) and synthetic surfactants (Tween20 derivatives), were physicochemically characterized by using different techniques, e.g., transmission electron microscopy, Raman spectroscopy, and small-angle X-ray scattering. The changes of niosome structure at different pHs depend on surfactants, which can affect the supramolecular structure of colloidal nanocarriers and their potential use both in vitro and in vivo. At pH 7.4, the shape and structure of niosomes have been maintained; however, niosomes show some differences in terms of bilayer thicknesses, water penetration, membrane coupling, and cholesterol dispersion. The acid pH (5.5) can increase the bilayer fluidity, and affect the cholesterol depletion. In fact, Tween21 niosomes form large vesicles with lower curvature radius at acid pH; while Tween20-derivative niosomes increase the intrachain mobility within a more interchain correlated membrane. These results demonstrate that the use of multiple physicochemical procedures provides more information about supramolecular structures of niosomes and improves the opportunity to deeply investigate the effect of stimuli responsiveness on the niosome structure.


Asunto(s)
Membrana Dobles de Lípidos/química , Liposomas/química , Polisorbatos/química , Química Física , Colesterol/química , Concentración de Iones de Hidrógeno , Dispersión del Ángulo Pequeño , Espectrometría Raman , Difracción de Rayos X
14.
Blood ; 119(10): 2335-45, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22262776

RESUMEN

The targeting of BCR-ABL, a hybrid oncogenic tyrosine (Y) kinase, does not eradicate chronic myeloid leukemia (CML)-initiating cells. Activation of ß-catenin was linked to CML leukemogenesis and drug resistance through its BCR-ABL-dependent Y phosphorylation and impaired binding to GSK3ß (glycogen synthase kinase 3ß). Herein, we show that GSK3ß is constitutively Y(216) phospho-activated and predominantly relocated to the cytoplasm in primary CML stem/progenitor cells compared with its balanced active/inactive levels and cytosolic/nuclear distribution in normal cells. Under cytokine support, persistent GSK3ß activity and its altered subcellular localization were correlated with BCR-ABL-dependent and -independent activation of MAPK and p60-SRC/GSK3ß complex formation. Specifically, GSK3ß activity and nuclear import were increased by imatinib mesylate (IM), a selective ABL inhibitor, but prevented by dasatinib that targets both BCR-ABL- and cytokine-dependent MAPK/p60-SRC activity. SB216763, a specific GSK3 inhibitor, promoted an almost complete suppression of primary CML stem/progenitor cells when combined with IM, but not dasatinib, while sparing bcr-abl-negative cells. Our data indicate that GSK3 inhibition acts to prime a pro-differentiative/apoptotic transcription program in the nucleus of IM-treated CML cells by affecting the ß-catenin, cyclinD1, C-EBPα, ATF5, mTOR, and p27 levels. In conclusion, our data gain new insight in CML biology, indicating that GSK3 inhibitors may be of therapeutic value in selectively targeting leukemia-initiating cells in combination with IM but not dasatinib.


Asunto(s)
Apoptosis/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Piperazinas/farmacología , Pirimidinas/farmacología , Antígenos CD34/metabolismo , Benzamidas , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Ciclina D1/metabolismo , Citocinas/farmacología , Dasatinib , Sinergismo Farmacológico , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células Madre Hematopoyéticas/metabolismo , Humanos , Mesilato de Imatinib , Indoles/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Maleimidas/farmacología , Microscopía Confocal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal/efectos de los fármacos , Tiazoles/farmacología , beta Catenina/metabolismo
15.
Mol Pharm ; 11(8): 2527-38, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24921216

RESUMEN

Most of the therapeutic strategies to counteract cancer imply killing of malignant cells. The most exploited cell death mechanism in cancer therapies is apoptosis, but recently, a lot of papers report that other mechanisms, mainly autophagy, could represent a new line of attack in the fight against cancer. One of the limitations for the effectiveness of the approved clinical treatments is the phenomenon of multidrug resistance (MDR) which enables the cancer cells to develop resistance to therapy, especially for chemotherapy. The MDR mechanisms include (a) decreased uptake of drug, (b) reduced intracellular drug concentration by efflux pumps, (c) altered cell cycle checkpoints, (d) altered drug targets, (e) increased metabolism of drugs, (f) induced emergency response genes to impair apoptotic pathway, and (g) altered drug detoxification. Great efforts have been made to reverse MDR. Currently, autophagy and nanosized drug delivery systems (DDSs) belonging to nanomaterials (NMs) provide alternative strategies to circumvent MDR. Nanosized DDSs are very promising tools to accumulate chemotherapeutics at targeting sites and control temporal and spatial drug release into tumor cells. On the other hand, autophagy could overrule drug resistance upon its activation by ensuring cell death via switching its prosurvival role to a prodeath one or by mediating the occurrence of cell death, i.e., apoptosis or necrosis. Likewise, the autophagy inhibition could counteract MDR by sensitizing the cells to anticancer molecules, i.e., Src family tyrosine kinase (SFK) inhibitors or 5-fluorouracil. Noteworthy, autophagy has been recently indicated to be a common cellular response to NMs, corroborating the fascinating idea of the exploitation of NM-induced autophagy in nanomedicine therapy. This review focuses on recently published literature about the relationship between MDR reversal and NMs or autophagy pointing to hypothesize a pivotal role of autophagy modulation induced by NMs in counteracting MDR.


Asunto(s)
Autofagia , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis , Línea Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Nanomedicina/métodos , Nanotecnología/métodos , Neoplasias/patología
16.
Nanoscale ; 16(16): 8132-8142, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38568015

RESUMEN

Tip-enhanced Raman spectroscopy (TERS) is an advanced technique to perform local chemical analysis of the surface of a sample through the improvement of the sensitivity and the spatial resolution of Raman spectroscopy by plasmonic enhancement of the electromagnetic signal in correspondence with the nanometer-sized tip of an atomic force microscope (AFM). In this work, TERS is demonstrated to represent an innovative and powerful approach for studying extracellular vesicles, in particular bovine milk-derived extracellular vesicles (mEVs), which are nanostructures with considerable potential in drug delivery and therapeutic applications. Raman spectroscopy has been used to analyze mEVs at the micrometric and sub-micrometric scales to obtain a detailed Raman spectrum in order to identify the 'signature' of mEVs in terms of their characteristic molecular vibrations and, therefore, their chemical compositions. With the ability to improve lateral resolution, TERS has been used to study individual mEVs, demonstrating the possibility of investigating a single mEV selected on the surface of the sample and, moreover, analyzing specific locations on the selected mEV with nanometer lateral resolution. TERS potentially allows one to reveal local differences in the composition of mEVs providing new insights into their structure. Also, thanks to the intrinsic properties of TERS to acquire the signal from only the first few nanometers of the surface, chemical investigation of the lipid membrane in correspondence with the various locations of the selected mEV could be performed by analyzing the peaks of the Raman shift in the relevant range of the spectrum (2800-3000 cm-1). Despite being limited to mEVs, this work demonstrates the potential of TERS in the analysis of extracellular vesicles.


Asunto(s)
Vesículas Extracelulares , Microscopía de Fuerza Atómica , Leche , Espectrometría Raman , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animales , Bovinos , Leche/química
17.
Biomed Microdevices ; 15(2): 299-309, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23239124

RESUMEN

Surfactant nanocarriers have received considerable attention in the last several years as interesting alternative to classic liposomes. Different pH-sensitive vesicular colloidal carriers based on Tween 20 derivatives, obtained after functionalization of the head groups of the surfactant with natural, or simply modified, amino acids, were proposed as drug nanocarriers. Dynamic light scattering, Small Angle X-ray Scattering, Trasmission Electron Microscopy and fluorescence studies were used for the physico-chemical characterization of vesicles and mean size, size distribution, zeta potential, vesicle morphology and bilayer properties were evaluated. The pH-sensitivity and the stability of formulations, in absence and in presence of foetal bovine serum, were also evaluated. Moreover, the contact between surfactant vesicles and liposomes designed to model the cellular membrane was investigated by fluorescence studies to preliminary explore the potential interaction between vesicle and cell membranes. Experimental findings showed that physico-chemical and technological features of pH-sensitive vesicles were influenced by the composition of the carriers. Furthermore, proposed carriers are able to interact with mimetic cell membrane and it is reasonable to attribute the observed differences in interaction to the architectural/structural properties of Tween 20 derivatives. The findings reported in this investigation showed that a deep and extensive physico-chemical characterization of the carrier is a fundamental step, according to the evidence that the knowledge of nanocarrier properties is necessary to translate its potentiality to in vitro/in vivo applications.


Asunto(s)
Materiales Biomiméticos/química , Membrana Celular/química , Concentración de Iones de Hidrógeno , Liposomas/química , Nanocápsulas/química , Tensoactivos/química , Ensayo de Materiales , Nanocápsulas/ultraestructura , Fosfolípidos/química
18.
Sci Total Environ ; 864: 161032, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549536

RESUMEN

In this study, we investigated the presence, abundance, and chemical nature of microplastics (MPs) in the freshwater fish gastrointestinal tract in the South of Italy, and evaluated the possible correlation between MPs and environmental pollutants. Fifty specimens belonging to five species (Scardinius erythrophthalmus, Barbus barbus, Rutilus rubilio, Leuciscus cephalus, Salmo trutta), from twenty sites were collected. MPs chemical feature was identified by means of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) and Raman microscopy. MPs were represented by 34.86 % fragments, film, and foam (all together MPs) and 65.14 % by fibers (MFs). The mean number of MPs/MFs per fish ranged from 6.25 ± 4.35 in R. rubilio and 2.26 ± 1.94 in B. barbus. The highest number of MPs/MFs per g of GIT was found in R. rubilio (9.07 ± 9.66), and the lowest in S. erythrophthalmus (0.75 ± 0.53). The highest number of MPs/MFs per fish species was found in L. cephalus (16), and the lowest in S. erythrophthalmus (4). Black predominated in every type of plastic debris identified, followed by blue and white, respectively for MFs and MPs. Polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), and polypropylene (PP), were the main plastic polymers found. At fish sampling sites, comparing concentrations in soils of potentially toxic elements and persistent organic pollutants with the number of MPs/MFs in fish, a significant correlation was noted with polychlorinated biphenyls (PCBs) and, in particular, with PCB 105, PCB 118, PCB 156, PCB 157, and PCB 167. A strong correlation was also observed with all types of polycyclic aromatic hydrocarbon (PAHs) particularly with benzo(ghi)perylene, dibenz(a,h)anthracene, benzo(b)fluoranthene, benz(a)anthracene, benzo(a)pyrene, and pyrene. The results of this study would be useful to draft management and action plans, promote intervention plans aiming at removing threats to species and habitats, and address ways of renaturalization.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos/química , Agua Dulce , Peces , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
19.
World J Stem Cells ; 15(8): 821-841, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37700819

RESUMEN

BACKGROUND: Cardiovascular diseases particularly myocardial infarction (MI) are the leading cause of mortality and morbidity around the globe. As cardiac tissue possesses very limited regeneration potential, therefore use of a potent small molecule, inhibitor Wnt production-4 (IWP-4) for stem cell differentiation into cardiomyocytes could be a promising approach for cardiac regeneration. Wnt pathway inhibitors may help stem cells in their fate determination towards cardiomyogenic lineage and provide better homing and survival of cells in vivo. Mesenchymal stem cells (MSCs) derived from the human umbilical cord have the potential to regenerate cardiac tissue, as they are easy to isolate and possess multilineage differentiation capability. IWP-4 may promote the differentiation of MSCs into the cardiac lineage. AIM: To evaluate the cardiac differentiation ability of IWP-4 and its subsequent in vivo effects. METHODS: Umbilical cord tissue of human origin was utilized to isolate the MSCs which were characterized by their morphology, immunophenotyping of surface markers specific to MSCs, as well as by tri-lineage differentiation capability. Cytotoxicity analysis was performed to identify the optimal concentration of IWP-4. MSCs were treated with 5 µM IWP-4 at two different time intervals. Differentiation of MSCs into cardiomyocytes was evaluated at DNA and protein levels. The MI rat model was developed. IWP-4 treated as well as untreated MSCs were implanted in the MI model, then the cardiac function was analyzed via echocardiography. MSCs were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) dye for tracking, while the regeneration of infarcted myocardium was examined by histology and immunohistochemistry. RESULTS: MSCs were isolated and characterized. Cytotoxicity analysis showed that IWP-4 was non-cytotoxic at 5 µM concentration. Cardiac specific gene and protein expression analyses exhibited more remarkable results in fourteen days treated group that was eventually selected for in vivo transplantation. Cardiac function was restored in the IWP-4 treated group in comparison to the MI group. Immunohistochemical analysis confirmed the homing of pre-differentiated MSCs that were labeled with DiI cell labeling dye. Histological analysis confirmed the significant reduction in fibrotic area, and improved left ventricular wall thickness in IWP-4 treated MSC group. CONCLUSION: Treatment of MSCs with IWP-4 inhibits Wnt pathway and promotes cardiac differentiation. These pre-conditioned MSCs transplanted in vivo improved cardiac function by cell homing, survival, and differentiation at the infarcted region, increased left ventricular wall thickness, and reduced infarct size.

20.
Nanotechnology ; 23(49): 495104, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23165288

RESUMEN

A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins.


Asunto(s)
Minerales/metabolismo , Nanotubos de Carbono/toxicidad , Paracentrotus/efectos de los fármacos , Paracentrotus/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Larva/efectos de los fármacos , Larva/metabolismo , Ensayo de Materiales , Minerales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA