Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Arch Virol ; 168(10): 244, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37676508

RESUMEN

Here, we report the detection and complete genome sequence of a novel potexvirus, tentatively named "Adenium obesum virus X" (AobVX), isolated from Adenium obesum, that was sent for virus screening at Australian Government post-entry quarantine (PEQ) facilities after being imported into Australia from China. The AobVX genome is 6781 nucleotides in length excluding the poly(A) tail and is predicted to encode conserved potexvirus proteins and sequence motifs across five open reading frames. The RNA-dependent RNA polymerase of this virus shares the highest amino acid sequence similarity with that of nerine potexvirus 1 (58.7% identity) and nerine virus X (58.58% identity). This is the first report of a positive-sense single-stranded RNA virus in A. obesum related to members of the genus Potexvirus in the family Alphaflexiviridae.


Asunto(s)
Apocynaceae , Potexvirus , Apocynaceae/virología , Potexvirus/clasificación , Potexvirus/genética , Potexvirus/aislamiento & purificación , Filogenia , Genoma Viral , ARN Polimerasa Dependiente del ARN/genética
2.
Arch Virol ; 167(8): 1701-1705, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35579714

RESUMEN

Here, we describe the full-length genome sequence of a novel potyvirus, tentatively named "Miscanthus sinensis mosaic virus" (MsiMV), isolated from Miscanthus sinensis (silver grass) held in a post-entry quarantine facility after being imported into Western Australia, Australia. The MsiMV genome is 9604 nucleotides (nt) in length, encoding a 3071-amino-acid (aa) polyprotein with conserved sequence motifs. The MsiMV genome is most closely related to that of sorghum mosaic virus (SrMV), with 74% nt and 78.5% aa sequence identity to the SrMV polyprotein region. Phylogenetic analysis based on the polyprotein grouped MsiMV with SrMV, sugarcane mosaic virus (SCMV), and maize dwarf mosaic virus (MDMV). This is the first report of a novel monopartite ssRNA virus in Miscanthus sinensis related to members of the genus Potyvirus in the family Potyviridae.


Asunto(s)
Virus del Mosaico , Potyvirus , Genoma Viral , Virus del Mosaico/genética , Filogenia , Enfermedades de las Plantas , Poaceae , Poliproteínas/genética
3.
J Exp Bot ; 64(10): 2767-78, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23667042

RESUMEN

Flowering time in the model plant Arabidopsis thaliana is regulated by both external environmental signals and internal developmental pathways. Natural variation at the FLOWERING H (FLH) locus has previously been described, with alleles present in the Cape Verde Islands accession causing early flowering, particularly after vernalization. The mechanism of FLH-induced early flowering is not understood. Here, the integration of FLH activity into the known flowering time pathways is described using molecular and genetic approaches. The identification of molecular markers that co-segregated with the FLH locus allowed the generation of multiple combinations of FLH alleles with mutations in flowering time genes in different flowering pathways. Combining an early flowering FLH allele with mutations in vernalization pathway genes that regulate FLC expression revealed that FLH appears to act in parallel to FLC. Surprisingly, the early flowering allele of FLH requires the floral integrator FD, but not FT, to accelerate flowering. This suggests a model in which some alleles of FLH are able to affect the FD-dependent activity of the floral activator complex.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción MEF2/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Alelos , Arabidopsis/clasificación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción/metabolismo
4.
Biology (Basel) ; 11(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35205129

RESUMEN

Rapid and safe access to new plant genetic stocks is crucial for primary plant industries to remain profitable, sustainable, and internationally competitive. Imported plant species may spend several years in Post Entry Quarantine (PEQ) facilities, undergoing pathogen testing which can impact the ability of plant industries to quickly adapt to new global market opportunities by accessing new varieties. Advances in high throughput sequencing (HTS) technologies provide new opportunities for a broad range of fields, including phytosanitary diagnostics. In this study, we compare the performance of two HTS methods (RNA-Seq and sRNA-Seq) with that of existing PEQ molecular assays in detecting and identifying viruses and viroids from various plant commodities. To analyze the data, we tested several bioinformatics tools which rely on different approaches, including direct-read, de novo, and reference-guided assembly. We implemented VirusReport, a new portable, scalable, and reproducible nextflow pipeline that analyses sRNA datasets to detect and identify viruses and viroids. We raise awareness of the need to evaluate cross-sample contamination when analyzing HTS data routinely and of using methods to mitigate index cross-talk. Overall, our results suggest that sRNA analyzed using VirReport provides opportunities to improve quarantine testing at PEQ by detecting all regulated exotic viruses from imported plants in a single assay.

5.
Viruses ; 14(7)2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35891459

RESUMEN

High-throughput sequencing (HTS) of host plant small RNA (sRNA) is a popular approach for plant virus and viroid detection. The major bottlenecks for implementing this approach in routine virus screening of plants in quarantine include lack of computational resources and/or expertise in command-line environments and limited availability of curated plant virus and viroid databases. We developed: (1) virus and viroid report web-based bioinformatics workflows on Galaxy Australia called GA-VirReport and GA-VirReport-Stats for detecting viruses and viroids from host plant sRNA extracts and (2) a curated higher plant virus and viroid database (PVirDB). We implemented sRNA sequencing with unique dual indexing on a set of plants with known viruses. Sequencing data were analyzed using GA-VirReport and PVirDB to validate these resources. We detected all known viruses in this pilot study with no cross-sample contamination. We then conducted a large-scale diagnosis of 105 imported plants processed at the post-entry quarantine facility (PEQ), Australia. We detected various pathogens in 14 imported plants and discovered that de novo assembly using 21-22 nt sRNA fraction and the megablast algorithm yielded better sensitivity and specificity. This study reports the successful, large-scale implementation of HTS and a user-friendly bioinformatics workflow for virus and viroid screening of imported plants at the PEQ.


Asunto(s)
Virus de Plantas , ARN Pequeño no Traducido , Viroides , Biología Computacional , Internet , Proyectos Piloto , Enfermedades de las Plantas , Virus de Plantas/genética , Plantas , Cuarentena , ARN de Planta , Viroides/genética
6.
Plants (Basel) ; 10(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34371633

RESUMEN

As part of a special edition for MDPI on plant virology in Australia, this review provides a brief high-level overview on the evolution of diagnostic techniques used in Australian government Post-Entry Quarantine (PEQ) facilities for testing imported plants for viruses. A comprehensive range of traditional and modern diagnostic approaches have historically been employed in PEQ facilities using bioassays, serological, and molecular techniques. Whilst these techniques have been effective, they are time consuming, resource intensive and expensive. The review highlights the importance of ensuring the best available science and diagnostic developments are constantly tested, evaluated, and implemented by regulators to ensure primary producers have rapid and safe access to new genetics to remain productive, sustainable and competitive.

7.
Genes (Basel) ; 12(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34440312

RESUMEN

The rapid and accurate identification of invertebrate pests detected at the border is a challenging task. Current diagnostic methods used at the borders are mainly based on time consuming visual and microscopic examinations. Here, we demonstrate a rapid in-house workflow for DNA extraction, PCR amplification of the barcode region of the mitochondrial cytochrome oxidase subunit I (COI) gene and Oxford Nanopore Technologies (ONT) MinION sequencing of amplified products multiplexed after barcoding on ONT Flongle flow cells. A side-by-side comparison was conducted of DNA barcode sequencing-based identification and morphological identification of both large (>0.5 mm in length) and small (<0.5 mm in length) invertebrate specimens intercepted at the Australian border. DNA barcode sequencing results supported the morphological identification in most cases and enabled immature stages of invertebrates and their eggs to be identified more confidently. Results also showed that sequencing the COI barcode region using the ONT rapid sequencing principle is a cost-effective and field-adaptable approach for the rapid and accurate identification of invertebrate pests. Overall, the results suggest that MinION sequencing of DNA barcodes offers a complementary tool to the existing morphological diagnostic approaches and provides rapid, accurate, reliable and defendable evidence for identifying invertebrate pests at the border.


Asunto(s)
Análisis Costo-Beneficio , Código de Barras del ADN Taxonómico/métodos , Insectos/clasificación , Invertebrados/clasificación , Análisis de Secuencia de ADN/métodos , Animales , Insectos/genética , Invertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA