Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plant J ; 80(1): 106-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25039964

RESUMEN

In plants, small interfering RNAs (siRNA) and microRNAs move to distant tissues where they control numerous developmental and physiological processes such as morphogenesis and stress responses. Grafting techniques and transient expression systems have been employed to show that sequence-specific siRNAs with a size of 21-24 nucleotides traffic to distant organs. We used inverted-repeat constructs producing siRNA targeting the meiosis factor DISRUPTED MEIOTIC cDNA 1 (DMC1) and GFP to test whether silencing signals move into meiotically active tissues. In grafted Nicotiana tabacum, a transgenic DMC1 siRNA signal made in source tissues preferably entered the anthers formed in the first flowers. Here, the DMC1 siRNA interfered with meiotic progression and, consequently, the flowers were at least partially sterile. In agro-infiltrated N. benthamiana plants, a GFP siRNA signal produced in leaves was allocated and active in most flower tissues including anthers. In hypocotyl-grafted Arabidopsis thaliana plants, the DMC1 silencing signal consistently appeared in leaves, petioles, and stem, and only a small number of plants displayed DMC1 siRNA signals in flowers. In all three tested plant species the systemic silencing signal penetrated male sporogenic tissues suggesting that plants harbour an endogenous long-distance small RNA transport pathway facilitating siRNA signalling into meiotically active cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Meiosis/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , Rec A Recombinasas/genética , Transducción de Señal , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Ciclo Celular/metabolismo , Flores/citología , Flores/genética , Flores/metabolismo , Silenciador del Gen , Genes Reporteros , Microscopía Confocal , Especificidad de Órganos , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Polen/citología , Polen/genética , Polen/metabolismo , Rec A Recombinasas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
2.
Plant J ; 80(1): 136-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25039268

RESUMEN

We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species- and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies.


Asunto(s)
Variación Genética , Genoma de Planta/genética , Solanum lycopersicum/genética , Cruzamiento , Mapeo Cromosómico , ADN de Plantas/química , ADN de Plantas/genética , Frutas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
3.
Plant Biotechnol J ; 7(9): 837-45, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19811618

RESUMEN

Reverse breeding (RB) is a novel plant breeding technique designed to directly produce parental lines for any heterozygous plant, one of the most sought after goals in plant breeding. RB generates perfectly complementing homozygous parental lines through engineered meiosis. The method is based on reducing genetic recombination in the selected heterozygote by eliminating meiotic crossing over. Male or female spores obtained from such plants contain combinations of non-recombinant parental chromosomes which can be cultured in vitro to generate homozygous doubled haploid plants (DHs). From these DHs, complementary parents can be selected and used to reconstitute the heterozygote in perpetuity. Since the fixation of unknown heterozygous genotypes is impossible in traditional plant breeding, RB could fundamentally change future plant breeding. In this review, we discuss various other applications of RB, including breeding per chromosome.


Asunto(s)
Cruzamiento/métodos , Técnicas de Silenciamiento del Gen , Meiosis , Desarrollo de la Planta , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Intercambio Genético , Genoma de Planta , Heterocigoto , Plantas/genética
4.
DNA Res ; 24(6): 549-558, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28605512

RESUMEN

Traditional plant breeding relies on meiotic recombination for mixing of parental alleles to create novel allele combinations. Detailed analysis of recombination patterns in model organisms shows that recombination is tightly regulated within the genome, but frequencies vary extensively along chromosomes. Despite being a model organism for fruit developmental studies, high-resolution recombination patterns are lacking in tomato. In this study, we developed a novel methodology to use low-coverage resequencing to identify genome-wide recombination patterns and applied this methodology on 60 tomato Recombinant Inbred Lines (RILs). Our methodology identifies polymorphic markers from the low-coverage resequencing population data and utilizes the same data to locate the recombination breakpoints in individuals by using a variable sliding window. We identified 1,445 recombination sites comprising 112 recombination prone regions enriched for AT-rich DNA motifs. Furthermore, the recombination prone regions in tomato preferably occurred in gene promoters over intergenic regions, an observation consistent with Arabidopsis thaliana, Zea mays and Mimulus guttatus. Overall, our cost effective method and findings enhance the understanding of meiotic recombination in tomato and suggest evolutionarily conserved recombination associated genomic features.


Asunto(s)
Genoma de Planta , Meiosis , Recombinación Genética , Análisis de Secuencia de ADN/métodos , Solanum lycopersicum/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple
5.
Nat Protoc ; 9(4): 761-72, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24603935

RESUMEN

Hybrid crop varieties are traditionally produced by selecting and crossing parental lines to evaluate hybrid performance. Reverse breeding allows doing the opposite: selecting uncharacterized heterozygotes and generating parental lines from them. With these, the selected heterozygotes can be recreated as F1 hybrids, greatly increasing the number of hybrids that can be screened in breeding programs. Key to reverse breeding is the suppression of meiotic crossovers in a hybrid plant to ensure the transmission of nonrecombinant chromosomes to haploid gametes. These gametes are subsequently regenerated as doubled-haploid (DH) offspring. Each DH carries combinations of its parental chromosomes, and complementing pairs can be crossed to reconstitute the initial hybrid. Achiasmatic meiosis and haploid generation result in uncommon phenotypes among offspring owing to chromosome number variation. We describe how these features can be dealt with during a reverse-breeding experiment, which can be completed in six generations (∼1 year).


Asunto(s)
Arabidopsis/genética , Cruzamiento/métodos , Quimera , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Cromosomas de las Plantas , Haploidia , Heterocigoto , Meiosis , Plantas Modificadas Genéticamente , Polen/genética , Rec A Recombinasas/genética
6.
Nat Genet ; 44(4): 467-70, 2012 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-22406643

RESUMEN

Traditionally, hybrid seeds are produced by crossing selected inbred lines. Here we provide a proof of concept for reverse breeding, a new approach that simplifies meiosis such that homozygous parental lines can be generated from a vigorous hybrid individual. We silenced DMC1, which encodes the meiotic recombination protein DISRUPTED MEIOTIC cDNA1, in hybrids of A. thaliana, so that non-recombined parental chromosomes segregate during meiosis. We then converted the resulting gametes into adult haploid plants, and subsequently into homozygous diploids, so that each contained half the genome of the original hybrid. From 36 homozygous lines, we selected 3 (out of 6) complementing parental pairs that allowed us to recreate the original hybrid by intercrossing. In addition, this approach resulted in a complete set of chromosome-substitution lines. Our method allows the selection of a single choice offspring from a segregating population and preservation of its heterozygous genotype by generating homozygous founder lines.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cruzamiento/métodos , Proteínas de Ciclo Celular/genética , Rec A Recombinasas/genética , Secuencia de Bases , Quimera/genética , Cruzamientos Genéticos , Heterocigoto , Homocigoto , Meiosis/genética , Polimorfismo de Nucleótido Simple , Interferencia de ARN , ARN Interferente Pequeño , Semillas/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA