Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Tissue Viability ; 33(1): 18-26, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042701

RESUMEN

Diabetic wounds, as one of the most important complications of diabetes, face many challenges in treatment. Herein we investigated whether decellularized human amniotic membrane (dAM) loaded with epigallocatechin-3-gallate (EGCG) could promote healing in diabetic rats. Sixty diabetic rats were randomly planned into the untreated group, dAM group, EGCG group, and dAM + EGCG group. On days 7, 14, and 21, five rats from each group were sampled for stereological, molecular, and tensiometrical assessments. Our finding revealed that the wound closure rate, the total volumes of new epidermis and dermis, the numerical densities of fibroblasts, blood vessels, collagen density as well as tensiometrical parameters of the healed wounds were considerably increased in the treated groups than in the untreated group, and these changes were more obvious in the dAM + EGCG ones. Furthermore, the expression of TGF-ß, bFGF, and VEGF genes were significantly upregulated in all treated groups compared to the untreated group and were greater in the dAM + EGCG group. This is while expression of TNF-α and IL-1ß, as well as cell numerical densities of neutrophils and macrophages decreased more considerably in the dAM + EGCG group in comparison to the other groups. In conclusion, it was found that using both dAM transplantation and EGCG has more effect on diabetic wound healing.


Asunto(s)
Catequina/análogos & derivados , Diabetes Mellitus Experimental , Humanos , Ratas , Animales , Diabetes Mellitus Experimental/complicaciones , Amnios/metabolismo , Cicatrización de Heridas , Colágeno/farmacología
2.
J Chem Neuroanat ; 135: 102367, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043916

RESUMEN

BACKGROUND: Chronic use of tramadol can cause neurotoxic effects and subsequently cause neurodegeneration in the cerebellum. The main damage mechanisms identified are oxidative stress and inflammation. Currently, we investigated the effects of coenzyme Q10 (CoQ10) in attenuates of neurodegeneration in the cerebellum induced by chronic exposure to tramadol. MATERIAL AND METHODS: Seventy-two male mature albino rats were allocated into four equal groups, including; non-treated group, CoQ10 group (which received CoQ10 at 200 mg/kg/day orally for three weeks), tramadol group (which received tramadol hydrochloride at 50 mg/kg/day orally for three weeks), and tramadol+CoQ10 group (which received tramadol and CoQ10 at the same doses as the previous groups). Tissue samples were obtained for stereological, immunohistochemical, biochemical, and molecular evaluations. Also, functional tests were performed to evaluate behavioral properties. RESULTS: We found a significant increase in stereological parameters, antioxidant factors (catalase, glutathione, and superoxide dismutase), and behavioral function scores in the tramadol+CoQ10 group compared to the tramadol group (p < 0.05). In addition, malondialdehyde levels, the density of apoptotic cells, as well as the expression of pro-inflammatory (tumor necrosis factor-alpha, interleukin 1 beta, and interleukin 6) and autophagy (lysosome-associated membrane protein 2, autophagy-related 5, beclin 1, and autophagy-related 12) genes were considerably reduced in the tramadol+CoQ10 group compared to the tramadol group (p < 0.05). CONCLUSION: We conclude that the administration of CoQ10 has neuroprotective effects in the cerebellum of rats that have chronic exposure to tramadol.


Asunto(s)
Tramadol , Ratas , Masculino , Animales , Tramadol/farmacología , Ubiquinona/farmacología , Ubiquinona/metabolismo , Ubiquinona/uso terapéutico , Antioxidantes/farmacología , Estrés Oxidativo , Cerebelo/metabolismo
3.
Tissue Cell ; 89: 102462, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002289

RESUMEN

Successful treatment of diabetic wounds requires multifactorial approaches. Herein we investigated the effects of a bioengineered three-dimensional dermal derived matrix-scaffold (DMS) in combination with hyperbaric oxygen (HBO) in repairing of wound model in diabetic rats. Thirty days after induction of diabetes, a circular wound was created and treatments were performed for 21 days. Animals were randomly allocated into the untreated group, DMS group, HBO group, and DMS+HBO group. On days 7, 14, and 21, tissue samples were obtained for stereological, molecular, and tensiometrical assessments. Our results showed that the wound closure rate, volume of new dermis and epidermis, numerical density fibroblasts and blood vessels, collagen density, and biomechanical characterize were significantly higher in the treatment groups than in the untreated group, and these changes were more obvious in the DMS+HBO ones. Moreover, the expression of TGF-ß, bFGF, miRNA-21, miRNA-146a, and VEGF genes were meaningfully upregulated in treatment groups compared to the untreated group and were greater in the DMS+HBO group. This is while expression of TNF-α and IL-1ß, as well as the numerical density of neutrophil and macrophage decreased more considerably in the DMS+HBO group than in the other groups. Overall, using both DMS engraftment and HBO treatment has more effects on diabetic wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Oxigenoterapia Hiperbárica , Andamios del Tejido , Cicatrización de Heridas , Animales , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/patología , Ratas , Andamios del Tejido/química , Masculino , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA