Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Trends Biochem Sci ; 48(8): 665-672, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37270322

RESUMEN

Metamorphic proteins switch reversibly between multiple distinct, stable structures, often with different functions. It was previously hypothesized that metamorphic proteins arose as intermediates in the evolution of a new fold - rare and transient exceptions to the 'one sequence, one fold' paradigm. However, as described herein, mounting evidence suggests that metamorphic folding is an adaptive feature, preserved and optimized over evolutionary time as exemplified by the NusG family and the chemokine XCL1. Analysis of extant protein families and resurrected protein ancestors demonstrates that large regions of sequence space are compatible with metamorphic folding. As a category that enhances biological fitness, metamorphic proteins are likely to employ fold switching to perform important biological functions and may be more common than previously thought.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química
2.
Biopolymers ; 112(10): e23402, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32986858

RESUMEN

The metamorphic protein XCL1 switches between two distinct native structures with different functions in the human immune system. This structural interconversion requires complete rearrangement of all hydrogen bonding networks, yet fold-switching occurs spontaneously and reversibly in solution. One structure occupies the canonical α-ß chemokine fold and binds XCL1's cognate G-protein coupled receptor, while the other structure occupies a dimeric, all-ß fold that binds glycosaminoglycans and has antimicrobial activity. Both of these functions are important for the biologic role of XCL1 in the immune system, and each structure is approximately equally populated under near-physiologic conditions. Recent work has begun to illuminate XCL1's role in combatting infection and cancer. However, without a way to control XCL1's dynamic structural interconversion, it is difficult to study the role of XCL1 fold-switching in human health and disease. Thus, a molecular tool that can regulate the fractional population of the two XCL1 structures is needed. Here, we find by heparin affinity chromatography and NMR that an engineered XCL1 variant called CC5 can trigger a dose-dependent shift in XCL1's metamorphic equilibrium such that the receptor binding structure is depleted, and the antimicrobial structure is more heavily populated. This shift likely occurs due to formation of XCL1-CC5 heterodimers in which both protomers occupy the ß-sheet structure. These findings lay the groundwork for future studies seeking to understand the functional role of XCL1 metamorphosis, as well as studies screening for a drug-like molecule that can therapeutically target XCL1 by tuning its metamorphic equilibrium. Moreover, the proof of concept presented here suggests that protein metamorphosis is druggable, opening numerous avenues for controlling biological function of metamorphic proteins by altering the population of their multiple native states.


Asunto(s)
Quimiocinas C , Quimiocinas C/metabolismo , Glicosaminoglicanos , Heparina , Humanos , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo
3.
bioRxiv ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39091850

RESUMEN

Classically, chemokines coordinate leukocyte trafficking during immune responses; however, many chemokines have also been reported to possess direct antibacterial activity in vitro. Yet, the bacterial killing mechanism of chemokines and the biochemical properties that define which members of the chemokine superfamily are antimicrobial remain poorly understood. Here we report that the antimicrobial activity of chemokines is defined by their ability to bind phosphatidylglycerol and cardiolipin, two anionic phospholipids commonly found in the bacterial plasma membrane. We show that only chemokines able to bind these two phospholipids kill Escherichia coli and Staphylococcus aureus and that they exert rapid bacteriostatic and bactericidal effects against E. coli with a higher potency than the antimicrobial peptide beta-defensin 3. Furthermore, our data support that bacterial membrane cardiolipin facilitates the antimicrobial action of chemokines. Both biochemical and genetic interference with the chemokine-cardiolipin interaction impaired microbial growth arrest, bacterial killing, and membrane disruption by chemokines. Moreover, unlike conventional antibiotics, E. coli failed to develop resistance when placed under increasing antimicrobial chemokine pressure in vitro. Thus, we have identified cardiolipin and phosphatidylglycerol as novel binding partners for chemokines responsible for chemokine antimicrobial action. Our results provide proof of principle for developing chemokines as novel antibiotics resistant to bacterial antimicrobial resistance mechanisms.

4.
Science ; 381(6659): 754-760, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590357

RESUMEN

In nature, proteins that switch between two conformations in response to environmental stimuli structurally transduce biochemical information in a manner analogous to how transistors control information flow in computing devices. Designing proteins with two distinct but fully structured conformations is a challenge for protein design as it requires sculpting an energy landscape with two distinct minima. Here we describe the design of "hinge" proteins that populate one designed state in the absence of ligand and a second designed state in the presence of ligand. X-ray crystallography, electron microscopy, double electron-electron resonance spectroscopy, and binding measurements demonstrate that despite the significant structural differences the two states are designed with atomic level accuracy and that the conformational and binding equilibria are closely coupled.


Asunto(s)
Ingeniería de Proteínas , Cristalografía por Rayos X , Ligandos , Ingeniería de Proteínas/métodos , Conformación Proteica
5.
Curr Opin Struct Biol ; 74: 102380, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35561475

RESUMEN

Metamorphic proteins are single amino acid sequences that reversibly interconvert between multiple, dramatically different native structures, often with distinct functions. Since the discovery of the first metamorphic proteins in the early 2000s, several additional metamorphic proteins have been identified, and it was suggested that up to 4% of proteins in the PDB may switch folds. Metamorphic proteins have been found to share common features such as marginal thermostability and inconsistencies in predicted secondary structures. Outstanding challenges in the field include the search for more metamorphic proteins and the design of new proteins that switch folds. Identification of novel metamorphic proteins in nature will improve therapeutic targeting of fold-switching proteins involved in human pathology and will enhance the design of protein-based therapies. Designed fold switching proteins have applications as biosensors, molecular switches, molecular machines, and self-assembling systems.


Asunto(s)
Pliegue de Proteína , Proteínas , Secuencia de Aminoácidos , Humanos , Estructura Secundaria de Proteína , Proteínas/química
6.
Pathogens ; 10(6)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204234

RESUMEN

Candida species cause serious infections requiring prolonged and sometimes toxic therapy. Antimicrobial proteins, such as chemokines, hold great interest as potential additions to the small number of available antifungal drugs. Metamorphic proteins reversibly switch between multiple different folded structures. XCL1 is a metamorphic, antimicrobial chemokine that interconverts between the conserved chemokine fold (an α-ß monomer) and an alternate fold (an all-ß dimer). Previous work has shown that human XCL1 kills C. albicans but has not assessed whether one or both XCL1 folds perform this activity. Here, we use structurally locked engineered XCL1 variants and Candida killing assays, adenylate kinase release assays, and propidium iodide uptake assays to demonstrate that both XCL1 folds kill Candida, but they do so via different mechanisms. Our results suggest that the alternate fold kills via membrane disruption, consistent with previous work, and the chemokine fold does not. XCL1 fold-switching thus provides a mechanism to regulate the XCL1 mode of antifungal killing, which could protect surrounding tissue from damage associated with fungal membrane disruption and could allow XCL1 to overcome candidal resistance by switching folds. This work provides inspiration for the future design of switchable, multifunctional antifungal therapeutics.

7.
Science ; 371(6524): 86-90, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33384377

RESUMEN

Metamorphic proteins switch between different folds, defying the protein folding paradigm. It is unclear how fold switching arises during evolution. With ancestral reconstruction and nuclear magnetic resonance, we studied the evolution of the metamorphic human protein XCL1, which has two distinct folds with different functions, making it an unusual member of the chemokine family, whose members generally adopt one conserved fold. XCL1 evolved from an ancestor with the chemokine fold. Evolution of a dimer interface, changes in structural constraints and molecular strain, and alteration of intramolecular protein contacts drove the evolution of metamorphosis. Then, XCL1 likely evolved to preferentially populate the noncanonical fold before reaching its modern-day near-equal population of folds. These discoveries illuminate how one sequence has evolved to encode multiple structures, revealing principles for protein design and engineering.


Asunto(s)
Quimiocinas C/química , Evolución Molecular , Ingeniería de Proteínas , Pliegue de Proteína , Humanos , Multimerización de Proteína
8.
ACS Infect Dis ; 6(5): 1204-1213, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32243126

RESUMEN

Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α-ß tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1. It is therefore surprising that machine learning based analysis predicts that CCL20 and CXCL4's α-helices are membrane disruptive, while XCL1's helix is not. XCL1, however, is the only chemokine known to be a metamorphic protein which can interconvert reversibly between two distinct native structures (a ß-sheet dimer and the α-ß chemokine structure). Here, we investigate XCL1's antimicrobial mechanism of action with a focus on the role of metamorphic folding. We demonstrate that XCL1 is a molecular "Swiss army knife" that can refold into different structures for distinct context-dependent functions: whereas the α-ß chemokine structure controls cell migration by binding to G-Protein Coupled Receptors (GPCRs), we find using small angle X-ray scattering (SAXS) that only the ß-sheet and unfolded XCL1 structures can induce negative Gaussian curvature (NGC) in membranes, the type of curvature topologically required for membrane permeation. Moreover, the membrane remodeling activity of XCL1's ß-sheet structure is strongly dependent on membrane composition: XCL1 selectively remodels bacterial model membranes but not mammalian model membranes. Interestingly, XCL1 also permeates fungal model membranes and exhibits anti-Candida activity in vitro, in contrast to the usual mode of antifungal defense which requires Th17 mediated cell-based responses. These observations suggest that metamorphic XCL1 is capable of a versatile multimodal form of antimicrobial defense.


Asunto(s)
Membrana Celular , Quimiocinas C/química , Proteínas Citotóxicas Formadoras de Poros/química , Candida , Pliegue de Proteína , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
Sci Signal ; 12(597)2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481523

RESUMEN

Chemokines interact with their G protein-coupled receptors (GPCRs) through a two-step, two-site mechanism and, through this interaction, mediate various homeostatic and immune response mechanisms. Upon initial recognition of the chemokine by the receptor, the amino terminus of the chemokine inserts into the orthosteric pocket of the GPCR, causing conformational changes that trigger intracellular signaling. There is considerable structural and functional evidence to suggest that the amino acid composition and length of the chemokine amino terminus is critical for GPCR activation, complementing the size and amino acid composition of the orthosteric pocket. However, very few structures of a native chemokine-receptor complex have been solved. Here, we used a hybrid approach that combines structure-function data with Rosetta modeling to describe key contacts within a chemokine-GPCR interface. We found that the extreme amino-terminal residues of the chemokine XCL1 (Val1, Gly2, Ser3, and Glu4) contribute a large fraction of the binding energy to its receptor XCR1, whereas residues near the disulfide bond-forming residue Cys11 modulate XCR1 activation. Alterations in the XCL1 amino terminus changed XCR1 activation, as determined by assessing inositol triphosphate accumulation, intracellular calcium release, and directed cell migration. Computational analysis of XCL1-XCR1 interactions revealed functional contacts involving Glu4 of XCL1 and Tyr117 and Arg273 of XCR1. Subsequent mutation of Tyr117 and Arg273 led to diminished binding and activation of XCR1 by XCL1. These findings demonstrate the utility of a hybrid approach, using biological data and homology modeling, to study chemokine-GPCR interactions.


Asunto(s)
Quimiocinas C/metabolismo , Quimiocinas/metabolismo , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Células COS , Quimiocinas/química , Quimiocinas/genética , Quimiocinas C/química , Quimiocinas C/genética , Chlorocebus aethiops , Células HEK293 , Humanos , Unión Proteica , Conformación Proteica , Ensayo de Unión Radioligante , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Relación Estructura-Actividad
10.
ACS Chem Biol ; 13(6): 1438-1446, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29787234

RESUMEN

Since the proposal of Anfinsen's thermodynamic hypothesis in 1963, our understanding of protein folding and dynamics has gained significant appreciation of its nuance and complexity. Intrinsically disordered proteins, chameleonic sequences, morpheeins, and metamorphic proteins have broadened the protein folding paradigm. Here, we discuss noncanonical protein folding patterns, with an emphasis on metamorphic proteins, and we review known metamorphic proteins that occur naturally and that have been engineered in the laboratory. Finally, we discuss research areas surrounding metamorphic proteins that are primed for future exploration, including evolution, drug discovery, and the quest for previously unrecognized metamorphs. As we enter an age where we are capable of complex bioinformatic searches and de novo protein design, we are primed to search for previously unrecognized metamorphic proteins and to design our own metamorphs to act as targeted, switchable drugs; biosensors; and more.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Pliegue de Proteína , Animales , Bacterias/química , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas , Desplegamiento Proteico
11.
J Biomed Mater Res A ; 104(6): 1510-22, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26841263

RESUMEN

Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma. This study assessed the feasibility of utilizing microparticles for drug delivery into cochlear fluids, testing persistence, distribution, biocompatibility, and drug release characteristics. To allow for delivery of multiple therapeutics, particles were composed of two distinct compartments; one containing polylactide-co-glycolide (PLGA), and one composed of acetal-modified dextran and PLGA. Following in vivo infusion, image analysis revealed microparticle persistence in the cochlea for at least 7 days post-infusion, primarily in the first and second turns. The majority of subjects maintained or had only slight elevation in auditory brainstem response thresholds at 7 days post-infusion compared to pre-infusion baselines. There was only minor to limited loss of cochlear hair cells and negligible immune response based on CD45+ immunolabling. When Piribedil-loaded microparticles were infused, Piribedil was detectable within the cochlear fluids at 7 days post-infusion. These results indicate that segmented microparticles are relatively inert, can persist, release their contents, and be functionally and biologically compatible with cochlear function and therefore are promising vehicles for cochlear drug delivery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1510-1522, 2016.


Asunto(s)
Cóclea/fisiología , Microesferas , Piribedil/administración & dosificación , Animales , Recuento de Células , Muerte Celular/efectos de los fármacos , Cóclea/efectos de los fármacos , Liberación de Fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Cobayas , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/efectos de los fármacos , Inmunohistoquímica , Piribedil/farmacología
12.
Bioeng Transl Med ; 1(1): 82-93, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-29313008

RESUMEN

Engineering the physical properties of particles, especially their size, is an important parameter in the fabrication of successful carrier systems for the delivery of therapeutics. Here, various routes were explored for the fabrication of particles in the nanosize regime. It was demonstrated that the use of a charged species and/or solvent with high dielectric constant can influence the size and distribution of particles, with the charged species having a greater effect on the size of the particles and the solvent a greater effect on the distribution of the particles. In addition to the fabrication of nanoparticles, their fractionation into specific size ranges using centrifugation was also investigated. The in vitro particle uptake and intracellular transport of these nanoparticles was studied as a function of size and incubation period. The highest level of intralysosomal localization was observed for the smallest nanoparticle group (average of 174 nm), followed by the groups with increasing sizes (averages of 378 and 575 nm), most likely due to the faster endosomal uptake of smaller particles. In addition, the internalization of nanoparticle clusters and number of nanoparticles per cell increased with longer incubation periods. This work establishes a technological approach to compartmentalized nanoparticles with defined sizes. This is especially important as relatively subtle differences in size can modulate cell uptake and determine intercellular fate. Future work will need to address the role of specific targeting ligands on cellular uptake and intracellular transport of compartmentalized nanoparticles.

13.
J Drug Target ; 23(7-8): 750-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26453170

RESUMEN

BACKGROUND: Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. PURPOSE: Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. METHODS: EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I(125) radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. RESULTS AND DISCUSSION: Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. CONCLUSION: EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas/química , Polietilenglicoles/química , Polímeros/química , Animales , Anisotropía , Preparaciones de Acción Retardada , Dispersión Dinámica de Luz , Hidrodinámica , Radioisótopos de Yodo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Tecnología Farmacéutica/métodos , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA