Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 104(2): 659-725, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589393

RESUMEN

Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Mesenquimatosas , Infarto del Miocardio , Humanos , Infarto del Miocardio/terapia , Infarto del Miocardio/patología , Miocardio/metabolismo , Fenómenos Fisiológicos Cardiovasculares , Insuficiencia Cardíaca/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología
2.
BMC Genomics ; 22(1): 412, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088266

RESUMEN

BACKGROUND: The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization. RESULTS: We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore, with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one specific state of MSCs biology. CONCLUSIONS: We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically, our results suggest different candidates as potential actors in MSCs biology and propose promising directions for future experimental investigations.


Asunto(s)
Células Madre Mesenquimatosas , ARN Largo no Codificante , Secuencia de Bases , Biología Computacional , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN
3.
FASEB J ; 34(6): 8250-8264, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32333618

RESUMEN

Hypoxia-inducible factor 1 α (HIF1α), a regulator of metabolic change, is required for the survival and differentiation potential of mesenchymal stem/stromal cells (MSC). Its role in MSC immunoregulatory activity, however, has not been completely elucidated. In the present study, we evaluate the role of HIF1α on MSC immunosuppressive potential. We show that HIF1α silencing in MSC decreases their inhibitory potential on Th1 and Th17 cell generation and limits their capacity to generate regulatory T cells. This reduced immunosuppressive potential of MSC is associated with a metabolic switch from glycolysis to OXPHOS and a reduced capacity to express or produce some immunosuppressive mediators including Intercellular Adhesion Molecule (ICAM), IL-6, and nitric oxide (NO). Moreover, using the Delayed-Type Hypersensitivity murine model (DTH), we confirm, in vivo, the critical role of HIF1α on MSC immunosuppressive effect. Indeed, we show that HIF1α silencing impairs MSC capacity to reduce inflammation and inhibit the generation of pro-inflammatory T cells. This study reveals the pivotal role of HIF1α on MSC immunosuppressive activity through the regulation of their metabolic status and identifies HIF1α as a novel mediator of MSC immunotherapeutic potential.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Inmunosupresores/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Citocinas/metabolismo , Tolerancia Inmunológica/fisiología , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Reguladores/metabolismo , Células TH1 , Células Th17/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Genet Med ; 22(3): 547-556, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31649276

RESUMEN

PURPOSE: Treacher Collins syndrome (TCS) is a rare autosomal dominant mandibulofacial dysostosis, with a prevalence of 0.2-1/10,000. Features include bilateral and symmetrical malar and mandibular hypoplasia and facial abnormalities due to abnormal neural crest cell (NCC) migration and differentiation. To date, three genes have been identified: TCOF1, POLR1C, and POLR1D. Despite a large number of patients with a molecular diagnosis, some remain without a known genetic anomaly. METHODS: We performed exome sequencing for four individuals with TCS but who were negative for pathogenic variants in the known causative genes. The effect of the pathogenic variants was investigated in zebrafish. RESULTS: We identified three novel pathogenic variants in POLR1B. Knockdown of polr1b in zebrafish induced an abnormal craniofacial phenotype mimicking TCS that was associated with altered ribosomal gene expression, massive p53-associated cellular apoptosis in the neuroepithelium, and reduced number of NCC derivatives. CONCLUSION: Pathogenic variants in the RNA polymerase I subunit POLR1B might induce massive p53-dependent apoptosis in a restricted neuroepithelium area, altering NCC migration and causing cranioskeletal malformations. We identify POLR1B as a new causative gene responsible for a novel TCS syndrome (TCS4) and establish a novel experimental model in zebrafish to study POLR1B-related TCS.


Asunto(s)
Anomalías Craneofaciales/genética , ARN Polimerasas Dirigidas por ADN/genética , Disostosis Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Anomalías Craneofaciales/patología , Predisposición Genética a la Enfermedad , Humanos , Disostosis Mandibulofacial/patología , Mutación , Cresta Neural/anomalías , Cresta Neural/patología , Proteína p53 Supresora de Tumor/genética , Secuenciación del Exoma , Pez Cebra/genética
5.
Stem Cells ; 34(2): 483-92, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26661518

RESUMEN

The role of interleukin 1 receptor antagonist (IL1RA) in mediating the immunosuppressive effect of mesenchymal stem/stromal cells (MSCs) has been reported in several studies. However, how MSC-derived IL1RA influences the host response has not been clearly investigated. We therefore derived MSCs from the bone marrow of IL1RA knockout mice and evaluated their immunosuppressive effect on different immune cell subsets. IL1RA deficient (IL1RA(-/-) ) or wild type (wt) MSCs inhibited to the same extend the proliferation of T lymphocytes. On the contrary, IL1RA(-/-) MSCs were less effective than wt MSCs to induce in vitro the macrophage polarization from M1 to M2 phenotype secreting IL10 and exerting a suppressive effect on CD4(+) T cells. Moreover compared with wt MSCs, IL1RA(-/-) MSCs did not efficiently support the survival of quiescent B lymphocytes and block their differentiation toward CD19(+) CD138(+) plasmablasts secreting IgG antibodies. The effectiveness of IL1RA secreted by MSCs in controlling inflammation was further shown in vivo using the collagen-induced arthritis murine model. MSCs lacking IL1RA expression were unable to protect mice from arthritic progression and even worsened clinical signs, as shown by higher arthritic score and incidence than control arthritic mice. IL1RA(-/-) MSCs were not able to decrease the percentage of Th17 lymphocytes and increase the percentage of Treg cells as well as decreasing the differentiation of B cells toward plasmablasts. Altogether, our results provide evidence of the key role of IL1RA secreted by MSCs to both control the polarization of macrophages toward a M2 phenotype and inhibit B cell differentiation in vivo.


Asunto(s)
Linfocitos B/metabolismo , Diferenciación Celular , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Linfocitos B/inmunología , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Macrófagos/inmunología , Células Madre Mesenquimatosas/inmunología , Ratones , Ratones Noqueados , Células Th17/inmunología , Células Th17/metabolismo
6.
Stem Cells ; 34(2): 456-69, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26528946

RESUMEN

Recently, a noninvasive and highly proliferative stem cell population from menstrual blood called MenSCs has been identified. Despite their use in clinical studies, their immunomodulatory properties have not yet been investigated. In this context, we studied the immunosuppressive properties of MenSCs in comparison with the well-characterized bone marrow derived-MSCs (BM-MSCs). Using an in vitro proliferation assays, we showed that MenSCs displayed a lower suppressive effect on peripheral blood mononuclear cells and in particular on the proinflammatory CD4(+) IFN-γ(+) and CD8(+) IFNγ(+) cells than BM-MSCs. Moreover, compared to BM-MSCs, MenSCs activated with IFN-γ and IL-1ß produced lower amounts of immunosuppressive factors such as IDO, PDL-1, PGE2, and Activin A and exhibited a substantial lower expression level of IFN-γ receptor subunits. In the collagen induced arthritis model, while BM-MSCs administration resulted in a potent therapeutic effect associated with a significant decrease of proinflammatory T cell frequency in the lymph nodes, MenSCs injection did not. In contrast, in the xeno-GVHD model, only MenSCs administration significantly increased the survival of mice. This beneficial effect mediated by MenSCs was associated with a higher capacity to migrate into the intestine and liver and not to their anti-inflammatory capacities. All together our results demonstrate for the first time that the therapeutic potential of MSC in the experimental xeno-GVHD model is independent of their immunosuppressive properties. These findings should be taken into consideration for the development of safe and effective cell therapies.


Asunto(s)
Artritis Experimental/terapia , Enfermedad Injerto contra Huésped/terapia , Ciclo Menstrual , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Tolerancia al Trasplante , Adolescente , Adulto , Artritis Experimental/inmunología , Artritis Experimental/patología , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Xenoinjertos , Humanos , Masculino , Persona de Mediana Edad
7.
J Biol Chem ; 289(12): 8402-12, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24505142

RESUMEN

Mesenchymal stem cells (MSCs) are considered for cartilage engineering given their ability to differentiate into chondrocytes. Chondrogenic differentiation of MSCs is currently triggered by micromass culture in the presence of a member of the TGF-ß superfamily. However, the main constituents of the cartilaginous matrix, aggrecan and type II collagen, are degraded at the end of the differentiation process through induction of matrix metallopeptidase (MMP)13. We hypothesized that MSCs undergoing chondrogenic differentiation produce an intermediate cytokine that triggers this matrix remodeling. Analysis of transcriptomic data identified angiopoietin-like 4 (ANGPTL4) as one of the most strongly up-regulated gene encoding a secreted factor during TGF-ß-induced chondrogenesis. To gain insight into the role of ANGPTL4 during chondrogenesis, we used recombinant ANGPTL4 as well as a RNA interference approach. Addition of exogenous ANGPTL4 during the course of TGF-ß-induced differentiation reduced the mRNA levels of aggrecan and type II collagen, although it increased those of MMP1 and MMP13. Accordingly, deposition of aggrecan and total collagens was diminished, whereas release of MMP1 and MMP13 was increased. Conversely, transfection of MSCs with an siRNA targeting ANGPTL4 prior to induction of chondrogenesis increased expression of type II collagen and aggrecan, whereas it repressed that of MMP1, MMP3, and MMP13. A neutralizing antibody against integrin αVß5, a known receptor for ANGPTL4, mimicked some of the effects observed after siRNA-mediated ANGPTL4 silencing. Our data provide evidence that ANGPTL4 promotes cartilage matrix remodeling by inhibiting expression of its two key components and by up-regulating the level of certain MMPs.


Asunto(s)
Angiopoyetinas/metabolismo , Cartílago/fisiología , Diferenciación Celular , Condrocitos/citología , Condrogénesis , Células Madre Mesenquimatosas/citología , Agrecanos/genética , Agrecanos/metabolismo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/genética , Cartílago/citología , Cartílago/metabolismo , Células Cultivadas , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Interferencia de ARN , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
8.
Methods Protoc ; 7(3)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804337

RESUMEN

Intestinal macrophages have been poorly studied in fish, mainly due to the lack of specific molecular markers for their identification and isolation. To address this gap, using the zebrafish Tg(mpeg1:EGFP) transgenic line, we developed a fluorescence-activated cell sorting strategy (FACS) that allows us to isolate different intestinal macrophage subpopulations, based on GFP expression and morphological differences. Also, we achieved the purification of high-quality total RNA from each population to perform transcriptomic analysis. The complete strategy comprises three steps, including intestine dissection and tissue dissociation, the isolation of each intestinal macrophage population via FACS, and the extraction of total RNA. To be able to characterize molecularly different macrophage subpopulations and link them to their functional properties will allow us to unravel intestinal macrophage biology.

9.
Stem Cell Res Ther ; 15(1): 70, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454524

RESUMEN

BACKGROUND: Initially discovered for its ability to regenerate ear holes, the Murphy Roth Large (MRL) mouse has been the subject of multiple research studies aimed at evaluating its ability to regenerate other body tissues and at deciphering the mechanisms underlying it. These enhanced abilities to regenerate, retained during adulthood, protect the MRL mouse from degenerative diseases such as osteoarthritis (OA). Here, we hypothesized that mesenchymal stromal/stem cells (MSC) derived from the regenerative MRL mouse could be involved in their regenerative potential through the release of pro-regenerative mediators. METHOD: To address this hypothesis, we compared the secretome of MRL and BL6 MSC and identified several candidate molecules expressed at significantly higher levels by MRL MSC than by BL6 MSC. We selected one candidate, Plod2, and performed functional in vitro assays to evaluate its role on MRL MSC properties including metabolic profile, migration, and chondroprotective effects. To assess its contribution to MRL protection against OA, we used an experimental model for osteoarthritis induced by collagenase (CiOA). RESULTS: Among the candidate molecules highly expressed by MRL MSC, we focused our attention on procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2). Plod2 silencing induced a decrease in the glycolytic function of MRL MSC, resulting in the alteration of their migratory and chondroprotective abilities in vitro. In vivo, we showed that Plod2 silencing in MRL MSC significantly impaired their capacity to protect mouse from developing OA. CONCLUSION: Our results demonstrate that the chondroprotective and therapeutic properties of MRL MSC in the CiOA experimental model are in part mediated by PLOD2.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Animales , Ratones , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo
10.
Front Cell Dev Biol ; 11: 1123299, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215080

RESUMEN

Objective: Cartilage, as the majority of adult mammalian tissues, has limited regeneration capacity. Cartilage degradation consecutive to joint injury or aging then leads to irreversible joint damage and diseases. In contrast, several vertebrate species such as the zebrafish have the remarkable capacity to spontaneously regenerate skeletal structures after severe injuries. The objective of our study was to test the regenerative capacity of Meckel's cartilage (MC) upon mechanical injury in zebrafish and to identify the mechanisms underlying this process. Methods and Results: Cartilage regenerative capacity in zebrafish larvae was investigated after mechanical injuries of the lower jaw MC in TgBAC(col2a1a:mCherry), to visualize the loss and recovery of cartilage. Confocal analysis revealed the formation of new chondrocytes and complete regeneration of MC at 14 days post-injury (dpi) via chondrocyte cell cycle re-entry and proliferation of pre-existing MC chondrocytes near the wound. Through expression analyses, we showed an increase of nrg1 expression in the regenerating lower jaw, which also expresses Nrg1 receptors, ErbB3 and ErbB2. Pharmacological inhibition of the ErbB pathway and specific knockdown of Nrg1 affected MC regeneration indicating the pivotal role of this pathway for cartilage regeneration. Finally, addition of exogenous NRG1 in an in vitro model of osteoarthritic (OA)-like chondrocytes induced by IL1ß suggests that Nrg1/ErbB pathway is functional in mammalian chondrocytes and alleviates the increased expression of catabolic markers characteristic of OA-like chondrocytes. Conclusion: Our results show that the Nrg1/ErbB pathway is required for spontaneous cartilage regeneration in zebrafish and is of interest to design new therapeutic approaches to promote cartilage regeneration in mammals.

11.
Stem Cell Res Ther ; 14(1): 12, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694226

RESUMEN

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are multipotent cells with strong tissue repair and immunomodulatory properties. Due to their ability to repress pathogenic immune responses, and in particular T cell responses, they show therapeutic potential for the treatment of autoimmune diseases, organ rejection and graft versus host disease. MSCs have the remarkable ability to export their own mitochondria to neighboring cells in response to injury and inflammation. However, whether mitochondrial transfer occurs and has any role in the repression of CD4+ Th1 responses is unknown. METHODS AND RESULTS: In this report we have utilized CD4+ T cells from HNT TCR transgenic mice that develop Th1-like responses upon antigenic stimulation in vitro and in vivo. Allogeneic bone marrow-derived MSCs reduced the diabetogenic potential of HNT CD4+ T cells in vivo in a transgenic mouse model of disease. In co-culture experiments, we have shown that MSCs were able to reduce HNT CD4+ T cell expansion, expression of key effector markers and production of the effector cytokine IFNγ after activation. This was associated with the ability of CD4+ T cells to acquire mitochondria from MSCs as evidenced by FACS and confocal microscopy. Remarkably, transfer of isolated MSC mitochondria to CD4+ T cells resulted in decreased T cell proliferation and IFNγ production. These effects were additive with those of prostaglandin E2 secreted by MSCs. Finally, we demonstrated that both co-culture with MSCs and transfer of isolated MSC mitochondria prevent the upregulation of T-bet, the master Th1 transcription factor, on activated CD4+ T cells. CONCLUSION: The present study demonstrates that transfer of MSC mitochondria to activated CD4+ T cells results in the suppression of Th1 responses in part by downregulating T-bet expression. Furthermore, our studies suggest that MSC mitochondrial transfer might represent a general mechanism of MSC-dependent immunosuppression.


Asunto(s)
Linfocitos T CD4-Positivos , Células Madre Mesenquimatosas , Mitocondrias , Células TH1 , Animales , Ratones , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/fisiología , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Linfocitos T Reguladores , Células Th17 , Células TH1/metabolismo
12.
Stem Cell Res Ther ; 14(1): 335, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37981698

RESUMEN

BACKGROUND: The metabolic reprogramming of mesenchymal stem/stromal cells (MSC) favoring glycolysis has recently emerged as a new approach to improve their immunotherapeutic abilities. This strategy is associated with greater lactate release, and interestingly, recent studies have proposed lactate as a functional suppressive molecule, changing the old paradigm of lactate as a waste product. Therefore, we evaluated the role of lactate as an alternative mediator of MSC immunosuppressive properties and its contribution to the enhanced immunoregulatory activity of glycolytic MSCs. MATERIALS AND METHODS: Murine CD4+ T cells from C57BL/6 male mice were differentiated into proinflammatory Th1 or Th17 cells and cultured with either L-lactate, MSCs pretreated or not with the glycolytic inductor, oligomycin, and MSCs pretreated or not with a chemical inhibitor of lactate dehydrogenase A (LDHA), galloflavin or LDH siRNA to prevent lactate production. Additionally, we validated our results using human umbilical cord-derived MSCs (UC-MSCs) in a murine model of delayed type 1 hypersensitivity (DTH). RESULTS: Our results showed that 50 mM of exogenous L-lactate inhibited the proliferation rate and phenotype of CD4+ T cell-derived Th1 or Th17 by 40% and 60%, respectively. Moreover, the suppressive activity of both glycolytic and basal MSCs was impaired when LDH activity was reduced. Likewise, in the DTH inflammation model, lactate production was required for MSC anti-inflammatory activity. This lactate dependent-immunosuppressive mechanism was confirmed in UC-MSCs through the inhibition of LDH, which significantly decreased their capacity to control proliferation of activated CD4+ and CD8+ human T cells by 30%. CONCLUSION: These findings identify a new MSC immunosuppressive pathway that is independent of the classical suppressive mechanism and demonstrated that the enhanced suppressive and therapeutic abilities of glycolytic MSCs depend at least in part on lactate production.


Asunto(s)
Ácido Láctico , Células Madre Mesenquimatosas , Humanos , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Inmunosupresores , Diferenciación Celular
13.
Stem Cells Int ; 2022: 5494749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561277

RESUMEN

Background: Mesenchymal stem/stromal cells (MSCs) have been widely used for their therapeutic properties in many clinical applications including osteoarthritis. Despite promising preclinical results showing the ability of MSC to reduce the clinical severity of osteoarthritis (OA) in experimental animal models, the benefits of intra-articular injection of MSC in OA patients are limited to the short term. In this regard, it is anticipated that improving the properties of MSC may collectively enhance their long-term beneficial effects on OA. Methods and Results: Recently, we have shown that PPARß/δ inhibition using a commercially available antagonist in murine MSC increases their immunoregulatory potential in vitro as well as their therapeutic potential in an experimental murine arthritis model. Here, we relied on an innovative strategy to inhibit PPARß/δ:NF-κB TF65 subunit interaction in human MSC by designing and synthesizing an interfering peptide, referred to PP11. Through RT-qPCR experiments, we evidenced that the newly synthesized PP11 peptide reduced the expression level of PDK4, a PPARß/δ target gene, but did not modify the expression levels of ACOX1 and CPT1A, PPARα target genes, and FABP4, a PPARγ target gene compared with untreated human MSC. Moreover, we showed that human MSCs pretreated with PP11 exhibit a significantly higher capacity to inhibit the proliferation of activated PBMC and to decrease the frequency of M1-like macrophages. Conclusions: We designed and synthesized an interfering peptide that potently and specifically blocks PPARß/δ activity with concomitant enhancement of MSC immunoregulatory properties.

14.
Theranostics ; 12(8): 3995-4009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664055

RESUMEN

Rationale: Macrophages are multifunctional cells with a pivotal role on tissue development, homeostasis and regeneration. Indeed, in response to tissue injury and the ensuing regeneration process, macrophages are challenged and undergo massive metabolic adaptations and changes. However, the control of this metabolic reprogramming by macrophage microenvironment has never been deciphered in vivo. Methods: In this study, we used zebrafish model and caudal fin resection as a robust regeneration system. We explored specific changes in gene expression after tissue amputation via single-cell RNA sequencing analysis and whole-tissue transcriptomic analysis. Based on the identification of key modifications, we confirmed the role of the lactate pathway in macrophage response and fin regeneration, through the combination of chemical and genetic inhibitors of this pathway. Results: Single cell RNA sequencing revealed the upregulation of different genes associated with glycolysis and lactate metabolism in macrophages, upon fin regeneration. Hence, using chemical inhibitors of the LDH enzyme, we confirmed the role of lactate in macrophage recruitment and polarization, to promote a pro-inflammatory phenotype and enhance fin regeneration. The genetic modulation of monocarboxylate transporters illustrated a complex regulation of lactate levels, based on both intracellular and extracellular supplies. Commonly, the different sources of lactate resulted in macrophage activation with an increased expression level of inflammatory cytokines such as TNFa during the first 24 hours of regeneration. Transcriptomic analyses confirmed that lactate induced a global modification of gene expression in macrophages. Conclusion: Altogether, our findings highlight the crucial role of lactate at the onset of macrophage differentiation toward a pro-inflammatory phenotype. The deep modifications of macrophage phenotype mediated by lactate and downstream effectors play a key role to coordinate inflammatory response and tissue regeneration.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Citocinas/metabolismo , Lactatos/metabolismo , Macrófagos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
15.
Curr Protoc ; 2(11): e596, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36342311

RESUMEN

Osteoarthritis (OA) is the most common form of arthritis and a major source of pain and disability in the adult population. There is a significant unmet medical need for the development of effective pharmacological therapies for the treatment of OA. In addition to spontaneously occurring animal models of OA, many experimental animal models have been developed to provide insights into mechanisms of pathogenesis and progression. Many of these animal models are also being used in the drug development pipeline. Here, we provide an overview of commonly used and emerging preclinical small animal models of OA and highlight the strengths and limitations of small animal models in the context of translational drug development. There is limited information in the published literature regarding the technical reliability of these small animal models and their ability to accurately predict clinical drug development outcomes. The cost and complexity of the available models however is an important consideration for pharmaceutical companies, biotechnology startups, and contract research organizations wishing to incorporate preclinical models in target validation, discovery, and development pipelines. Further considerations relevant to industry include timelines, methods of induction, the key issue of reproducibility, and appropriate outcome measures needed to objectively assess outcomes of experimental therapeutics. Preclinical small animal models are indispensable tools that will shine some light on the pathogenesis of OA and its molecular endotypes in the context of drug development. This paper will focus on small animal models used in preclinical OA research. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.


Asunto(s)
Artritis Experimental , Osteoartritis , Animales , Reproducibilidad de los Resultados , Osteoartritis/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Desarrollo de Medicamentos , Modelos Animales de Enfermedad
16.
Stem Cell Res Ther ; 13(1): 167, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461240

RESUMEN

BACKGROUND: Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using MSC derived from the bone marrow of PPARß/δ (Peroxisome proliferator-activated receptors ß/δ) knockout mice that the acute cardioprotective properties of MSC during the first hour of reperfusion are PPARß/δ-dependent but not related to the anti-inflammatory effect of MSC. However, the role of the modulation of PPARß/δ expression on MSC cardioprotective and anti-apoptotic properties has never been investigated. OBJECTIVES: The aim of this study was to investigate the role of PPARß/δ modulation (inhibition or activation) in MSC therapeutic properties in vitro and ex vivo in an experimental model of myocardial infarction. METHODS AND RESULTS: Naïve MSC and MSC pharmacologically activated or inhibited for PPARß/δ were challenged with H2O2. Through specific DNA fragmentation quantification and qRT-PCR experiments, we evidenced in vitro an increased resistance to oxidative stress in MSC pre-treated by the PPARß/δ agonist GW0742 versus naïve MSC. In addition, PPARß/δ-priming allowed to reveal the anti-apoptotic effect of MSC on cardiomyocytes and endothelial cells in vitro. When injected during reperfusion, in an ex vivo heart model of myocardial infarction, 3.75 × 105 PPARß/δ-primed MSC/heart provided the same cardioprotective efficiency than 7.5 × 105 naïve MSC, identified as the optimal dose in our experimental model. This enhanced short-term cardioprotective effect was associated with an increase in both anti-apoptotic effects and the number of MSC detected in the left ventricular wall at 1 h of reperfusion. By contrast, PPARß/δ inhibition in MSC before their administration in post-ischemic hearts during reperfusion decreased their cardioprotective effects. CONCLUSION: Altogether these results revealed that PPARß/δ-primed MSC exhibit an increased resistance to oxidative stress and enhanced anti-apoptotic properties on cardiac cells in vitro. PPARß/δ-priming appears as an innovative strategy to enhance the cardioprotective effects of MSC and to decrease the therapeutic injected doses. These results could be of major interest to improve MSC efficacy for the cardioprotection of injured myocardium in AMI patients.


Asunto(s)
Células Madre Mesenquimatosas , Infarto del Miocardio , Daño por Reperfusión Miocárdica , PPAR delta , PPAR-beta , Animales , Células Endoteliales/metabolismo , Peróxido de Hidrógeno , Células Madre Mesenquimatosas/metabolismo , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/terapia , PPAR delta/agonistas , PPAR delta/genética , PPAR delta/metabolismo , PPAR-beta/agonistas , PPAR-beta/genética , PPAR-beta/metabolismo , Tiazoles
17.
Front Immunol ; 13: 838425, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401552

RESUMEN

The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen Mycobacterium marinum. Zebrafish were inoculated with different infectious doses of M. marinum prior to fin resection. While mild infection accelerated fin regeneration, moderate or severe infection delayed this process by reducing blastemal cell proliferation and impeding tissue morphogenesis. This was correlated with impaired macrophage recruitment at the wound of the larvae receiving high infectious doses. Macrophage activation characterized, in part, by a high expression level of tnfa was exacerbated in severely infected fish during the early phase of the regeneration process, leading to macrophage necrosis and their complete absence in the later phase. Our results demonstrate how a mycobacterial infection influences the macrophage response and tissue regenerative processes.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium marinum , Animales , Macrófagos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
18.
Stem Cell Res Ther ; 13(1): 7, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012660

RESUMEN

BACKGROUND: Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs. In the present study, we investigated the immunoregulatory potential of human MuStem (hMuStem) cells, for which we previously demonstrated that they can survive in injured muscle and robustly counteract adverse tissue remodeling. METHODS: The impact of hMuStem cells or their secretome on the proliferative and phenotypic properties of T-cells was explored by co-culture experiments with either peripheral blood mononucleated cells or CD3-sorted T-cells. A comparative study was produced with the bone marrow (BM)-MSCs. The expression profile of immune cell-related markers on hMuStem cells was determined by flow cytometry while their secretory profile was examined by ELISA assays. Finally, the paracrine and cell contact-dependent effects of hMuStem cells on the T-cell-mediated cytotoxic response were analyzed through IFN-γ expression and lysis activity. RESULTS: Here, we show that hMuStem cells have an immunosuppressive phenotype and can inhibit the proliferation and the cytotoxic response of T-cells as well as promote the generation of regulatory T-cells through direct contact and via soluble factors. These effects are associated, in part, with the production of mediators including heme-oxygenase-1, leukemia inhibitory factor and intracellular cell adhesion molecule-1, all of which are produced at significantly higher levels by hMuStem cells than BM-MSCs. While the production of prostaglandin E2 is involved in the suppression of T-cell proliferation by both hMuStem cells and BM-MSCs, the participation of inducible nitric oxide synthase activity appears to be specific to hMuStem cell-mediated one. CONCLUSIONS: Together, our findings demonstrate that hMuStem cells are potent immunoregulatory cells. Combined with their myogenic potential, the attribution of these properties reinforces the positioning of hMuStem cells as candidate therapeutic agents for the treatment of MDs.


Asunto(s)
Células Madre Adultas , Células Madre Mesenquimatosas , Proliferación Celular , Técnicas de Cocultivo , Humanos , Activación de Linfocitos
19.
J Cell Mol Med ; 15(11): 2377-88, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21129154

RESUMEN

Mesenchymal stem cell (MSC) therapy is a promising approach to promote tissue regeneration by either differentiating the MSCs into the desired cell type or by using their trophic functions to promote endogenous tissue repair. These strategies of regenerative medicine are limited by the availability of MSCs at the point of clinical care. Our laboratory has recently identified multipotent mesenchymal progenitor cells (MPCs) in traumatically injured muscle tissue, and the objective of this study was to compare these cells to a typical population of bone marrow derived MSCs. Our hypothesis was that the MPCs exhibit multilineage differentiation and expression of trophic properties that make functionally them equivalent to bone marrow derived MSCs for tissue regeneration therapies. Quantitative evaluation of their proliferation, metabolic activity, expression of characteristic cell-surface markers and baseline gene expression profile demonstrate substantial similarity between the two cell types. The MPCs were capable of differentiation into osteoblasts, adipocytes and chondrocytes, but they appeared to demonstrate limited lineage commitment compared to the bone marrow derived MSCs. The MPCs also exhibited trophic (i.e. immunoregulatory and pro-angiogenic) properties that were comparable to those of MSCs. These results suggest that the traumatized muscle derived MPCs may not be a direct substitute for bone marrow derived MSCs. However, because of their availability and abundance, particularly following orthopaedic injuries when traumatized muscle is available to harvest autologous cells, MPCs are a promising cell source for regenerative medicine therapies designed to take advantage of their trophic properties.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Músculo Esquelético/citología , Músculo Esquelético/lesiones , Regeneración , Adipocitos/citología , Adulto , Células de la Médula Ósea/citología , Proliferación Celular , Células Cultivadas , Condrocitos/citología , Humanos , Neovascularización Fisiológica , Osteoblastos/citología , Ingeniería de Tejidos
20.
Front Immunol ; 12: 707856, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335621

RESUMEN

Several infectious pathologies in humans, such as tuberculosis or SARS-CoV-2, are responsible for tissue or lung damage, requiring regeneration. The regenerative capacity of adult mammals is limited to few organs. Critical injuries of non-regenerative organs trigger a repair process that leads to a definitive architectural and functional disruption, while superficial wounds result in scar formation. Tissue lesions in mammals, commonly studied under non-infectious conditions, trigger cell death at the site of the injury, as well as the production of danger signals favouring the massive recruitment of immune cells, particularly macrophages. Macrophages are also of paramount importance in infected injuries, characterized by the presence of pathogenic microorganisms, where they must respond to both infection and tissue damage. In this review, we compare the processes implicated in the tissue repair of non-infected versus infected injuries of two organs, the skeletal muscles and the lungs, focusing on the primary role of macrophages. We discuss also the negative impact of infection on the macrophage responses and the possible routes of investigation for new regenerative therapies to improve the recovery state as seen with COVID-19 patients.


Asunto(s)
COVID-19/inmunología , Macrófagos Alveolares/fisiología , SARS-CoV-2/fisiología , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Humanos , Infecciones , Mamíferos , Regeneración , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA