Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nano Lett ; 24(1): 486-492, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147568

RESUMEN

Regulating ion transport is a prevailing strategy to suppress lithium dendrite growth, in which the distribution of ion regulatory sites plays an important role. Here a hyperbranched polyamidoamine (HBPA) grafted polyethylene (PE) composite separator (HBPA-g-PE) is reported. The densely and uniformly distributed positive -NH2 and negative -CHNO- groups efficiently restrict the anion migration and promote Li+ transport at the surface of the lithium metal anode. The obtained Li foil symmetric cell delivers a stable cycle performance with a low-voltage hysteresis of 130 mV for over 1500 h (3000 cycles) at an ultrahigh current density of 20 mA cm-2 and a practical areal capacity of 5 mAh cm-2. Moreover, HBPA-g-PE separator enables a practical lithium-sulfur battery to achieve over 200-cycle stable performance with initial and retained capacity of 700 and 455 mAh g-1, at a high sulfur loading of 4 mg cm-2 and a low electrolyte content/sulfur loading ratio of 8 µL mg-1.

2.
Small ; 20(3): e2305529, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688316

RESUMEN

Reducing non-radiative recombination energy loss (ΔEnonrad ) in organic solar cells (OSCs) has been considered an effective method to improve device efficiency. In this study, the backbone of PTBTT-4F/4Cl is divided into D1-D2-D3 segments and reconstructed. The isomerized TPBTT-4F/4Cl obtains stronger intramolecular charge transfer (ICT), thus leading to elevated highest occupied molecular orbital (HOMO) energy level and reduced bandgap (Eg ). According to ELoss  = Eg- qVOC , the reduced Eg and enhanced open circuit voltage (VOC ) result in lower ELoss , indicating that ELoss has been effectively suppressed in the TPBTT-4F/4Cl based devices. Furthermore, compared to PTBTT derivatives, the isomeric TPBTT derivatives exhibit more planar molecular structure and closer intermolecular stacking, thus affording higher crystallinity of the neat films. Therefore, the reduced energy disorder and corresponding lower Urbach energy (Eu ) of the TPBTT-4F/4Cl blend films lead to low ELoss and high charge-carrier mobility of the devices. As a result, benefitting from synergetic control of molecular stacking and energetic offsets, a maximum power conversion efficiency (PCE) of 15.72% is realized from TPBTT-4F based devices, along with a reduced ΔEnonrad of 0.276 eV. This work demonstrates a rational method of suppressing VOC loss and improving the device performance through molecular design engineering by core segmentation and isomerization.

3.
Angew Chem Int Ed Engl ; 63(30): e202403610, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38721714

RESUMEN

Nonradiative recombination losses occurring at the interface pose a significant obstacle to achieve high-efficiency perovskite solar cells (PSCs), particularly in inverted PSCs. Passivating surface defects using molecules with different functional groups represents one of the key strategies for enhancing PSCs efficiency. However, a lack of insight into the passivation orientation of molecules on the surface is a challenge for rational molecular design. In this study, aminothiol hydrochlorides with different alkyl chains but identical electron-donating (-SH) and electron-withdrawing (-NH3 +) groups were employed to investigate the interplay between molecular structure, orientation, and interaction on perovskite surface. The 2-Aminoethane-1-thiol hydrochloride with shorter alkyl chains exhibited a preference of parallel orientations, which facilitating stronger interactions with the surface defects through strong coordination and hydrogen bonding. The resultant perovskite films following defect passivation demonstrate reduced ion migration, inhibition of nonradiative recombination, and more n-type characteristics for efficient electron transfer. Consequently, an impressive power conversion efficiency of 25 % was achieved, maintaining 95 % of its initial efficiency after 500 hours of continuous maximum power point tracking.

4.
Small ; 18(17): e2107109, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35297553

RESUMEN

Enabling efficient and durable charge storage under high sulfur loading and lean electrolyte remains a paramount challenge for Li-S battery technology to truly demonstrate its commercial viability. This work reports an amphoteric polymer binder, whose negatively and positively charged moieties allow for coregulation of both lithium cations and heteropolar lithium polysulfides through multiple intermolecular interactions. These interactions and the physical properties lead to simultaneously improved Li+ transport, polysulfide adsorption and catalysis, cathode robustness and anode stability. Therefore, this multifunctional binder endows Li-S batteries with compelling overall performances even under rigorous conditions. At low sulfur loading and copious electrolyte, the cell shows a low capacity-fading rate of 0.056% cycle-1 upon 700 cycles. At sulfur loading of 6.8 mg cm-2 and low E/S of 6 µL mg-1 , the cell still delivers stable areal capacities between 4.2 and 4.8 mAh cm-2 in 50 cycles without obvious decay at 0.2 C. The commercial feasibility of this work is further manifested by its zero added weight, low material cost, and ease of manufacturing and scale-up. The efficacy and simplicity of this work symbolize an example of lab-scale battery research aiming at improved technology and manufacturing readiness level.

5.
Molecules ; 26(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451152

RESUMEN

A fully quantitative theory of the relationship between protein conformation and optical spectroscopy would facilitate deeper insights into biophysical and simulation studies of protein dynamics and folding. In contrast to intense bands in the far-ultraviolet, near-UV bands are much weaker and have been challenging to compute theoretically. We report some advances in the accuracy of calculations in the near-UV, which were realised through the consideration of the vibrational structure of the electronic transitions of aromatic side chains.


Asunto(s)
Péptidos/química , Dicroismo Circular , Conformación Proteica , Espectrofotometría Ultravioleta
6.
J Chem Phys ; 145(8): 084116, 2016 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-27586913

RESUMEN

A robust and model free Monte Carlo simulation method is proposed to address the challenge in computing the classical density of states and partition function of solids. Starting from the minimum configurational energy, the algorithm partitions the entire energy range in the increasing energy direction ("upward") into subdivisions whose integrated density of states is known. When combined with the density of states computed from the "downward" energy partitioning approach [H. Do, J. D. Hirst, and R. J. Wheatley, J. Chem. Phys. 135, 174105 (2011)], the equilibrium thermodynamic properties can be evaluated at any temperature and in any phase. The method is illustrated in the context of the Lennard-Jones system and can readily be extended to other molecular systems and clusters for which the structures are known.

7.
Phys Chem Chem Phys ; 17(38): 25123-32, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26349916

RESUMEN

A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic structure methods, because it is possible to build force fields that are consistent with electronic structure calculations that follow classical simulations. Such applications are commonly encountered in organic electronics, spectroscopy of complex systems and photobiology (e.g. photosynthetic systems). We illustrate the method by parameterizing the force fields of a molecule used in molecular semiconductors (2,2-dicyanovinyl-capped S,N-heteropentacene or DCV-SN5), a polymeric semiconductor (thieno[3,2-b]thiophene-diketopyrrolopyrrole TT-DPP) and a chromophore embedded in a protein environment (15,16-dihydrobiliverdin or DBV) where several hundreds of parameters need to be optimized in parallel.


Asunto(s)
Simulación de Dinámica Molecular , Cetonas/química , Conformación Molecular , Estructura Terciaria de Proteína , Proteínas/química , Pirroles/química , Semiconductores
8.
Phys Chem Chem Phys ; 17(5): 3898-908, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25559973

RESUMEN

Vibrational frequencies for carbon clusters, fullerenes and nanotubes evaluated using empirical carbon-carbon potentials are presented. For linear and cyclic clusters, frequencies evaluated with the reactive empirical bond order (REBO) potential provide the closest agreement with experiment. The mean absolute deviation (MAD) between experiment and the calculated harmonic frequencies is 79 cm(-1) for the bending modes and 76 cm(-1) for the stretching modes. The effects of anharmonicity are included via second order vibrational perturbation theory and tend to increase the frequency of the bending modes while the stretching modes have negative shifts in the region of 20-60 cm(-1), with larger shifts for the higher frequency modes. This results in MADs for the bending and stretching modes of 84 cm(-1) and 58 cm(-1), respectively. For the fullerene molecule C60, the high frequency modes are predicted to have harmonic frequencies that are significantly higher than experiment, and this is not corrected by accounting for anharmonicity. This overestimation of experimental observed frequencies is also evident in the calculated frequencies of the G band in nanotubes. This suggests that the REBO potential is not optimal for these larger systems and it is shown that adjustment of the parameters within the potential leads to closer agreement with experiment, particularly if higher and lower frequency modes are considered separately.

9.
J Phys Chem B ; 128(30): 7350-7361, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39034688

RESUMEN

We advance the quality of first-principles calculations of protein electronic circular dichroism (CD) through an amelioration of a key deficiency of a previous procedure that involved diabatization of electronic states on the amide chromophore (to obtain interamide couplings) in a ß-strand conformation of a diamide. This yields substantially improved calculated far-ultraviolet (far-UV) electronic circular dichroism (CD) spectra for ß-sheet conformations. The interamide couplings from the diabatization procedure for 13 secondary structural elements (13 diamide structures) are applied to compute the CD spectra for seven example proteins: myoglobin (α helix), jacalin (ß strand), concanavalin A (ß type I), elastase (ß type II), papain (α + ß), 310-helix bundle (310-helix) and snow flea antifreeze protein (polyproline). In all cases, except concanavalin A and papain, the CD spectra computed using the interamide couplings from the diabatization procedure yield improved agreement with experiment with respect to previous first-principles calculations.


Asunto(s)
Dicroismo Circular , Concanavalina A , Concanavalina A/química , Mioglobina/química , Proteínas/química , Papaína/química , Papaína/metabolismo , Péptidos/química , Electrones , Elastasa Pancreática/química , Elastasa Pancreática/metabolismo , Estructura Secundaria de Proteína
10.
Adv Mater ; 36(6): e2309208, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38009812

RESUMEN

Although the FAPbI3 perovskite system exhibits an impressive optoelectronic characteristic and thermal stability because of its energetically unstable black phase at room temperature, it is considerably challenging to attain a controllable and oriented nucleation of α-FAPbI3 . To overcome this challenge, a 2D perovskite with a released inorganic octahedral distortion designed by weakening the hydrogen interactions between the organic interlayer and [PbI6 ]4- octahedron is presented in this study. A highly matched heterointerface can be formed between the (002) facet of the 2D structure and the (100) crystal plane of the cubic α-FAPbI3 , thereby lowering the crystallization energy and inducing a heterogeneous nucleation of α-FAPbI3 . This "epitaxial growth" mechanism results form the highly preferred crystallographic orientation of the (100) facets, improved crystal quality and film uniformity, substantially increased charge transporting characteristics, and suppressed nonradiative recombination losses. An impressive power conversion efficiency (PCE) of 25.4% (certified 25.2%) is achieved using target PSCs, which demonstrates outstanding ambient and operational stability. The feasibility of this strategy is proved for the scalable deposition of homogeneous and high-quality perovskite thin films by demonstrating the remarkably increased PCE of the large-area perovskite solar module, from 18.2% to 20.1%.

11.
Bioresour Technol ; 399: 130590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490462

RESUMEN

Comprehensive and dynamic studies of cellulose pyrolysis reaction mechanisms are crucial in designing experiments and processes with enhanced safety, efficiency, and sustainability. The details of the pyrolysis mechanism are not readily available from experiments but can be better described via molecular dynamics (MD) simulations. However, the large size of cellulose molecules challenges accurate ab initio MD simulations, while existing reactive force field parameters lack precision. In this work, precise ab initio deep learning potentials field (DPLF) are developed and applied in MD simulations to facilitate the study of cellulose pyrolysis mechanisms. The formation mechanism and production rate of both valuable and greenhouse products from cellulose at temperatures larger than 1073 K are comprehensively described. This study underscores the critical role of advanced simulation techniques, particularly DLPF, in achieving efficient and accurate understanding of cellulose pyrolysis mechanisms, thus promoting wider industrial applications.


Asunto(s)
Celulosa , Aprendizaje Profundo , Pirólisis , Simulación de Dinámica Molecular , Temperatura
12.
Nat Commun ; 15(1): 6849, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127764

RESUMEN

SuFEx click chemistry demonstrates remarkable molecular assembly capabilities. However, the effective utilization of alkyl sulfonyl fluoride hubs in SuFEx chemistry, particularly in reactions with alcohols and primary amines, presents considerable challenges. This study pioneers an intramolecular chalcogen bonding activated SuFEx (S-SuFEx) click chemistry employing alkyl sulfonyl fluorides with γ-S as the activating group. The ChB-activated alkyl sulfonyl fluorides can react smoothly with phenols, alcohols, and amines, exhibiting enhanced reactivity compared to SO2F2. Excellent yields have been achieved with all 75 tested substrates. Pioneering the application of S-SuFEx chemistry, we highlight its immense potential in organic-inorganic linking, considering the critical role of interfacial covalent bonding in material fabrication. The S-SuFEx hub 1c, incorporating a trialkoxy silane group has been specifically designed and synthesized for organic-inorganic linking. In a simple step, 1c efficiently anchors various organic compounds onto surfaces of inorganic materials, forming functionalized surfaces with properties such as antibacterial activity, hydrophobicity, and fluorescence.

13.
Adv Mater ; 36(13): e2309998, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38108580

RESUMEN

While significant advancements in power conversion efficiencies (PCEs) of α-FAPbI3perovskite solar cells (PSCs) have been made, attaining controllable perovskite crystallization is still a considerable hurdle. This challenge stems from the initial formation of δ-FAPbI3, a more energetically stable phase than the desired black α-phase, during film deposition. This disrupts the heterogeneous nucleation of α-FAPbI3, causing the formation of mixed phases and defects. To this end, polarity engineering using molecular additives, specifically ((methyl-sulfonyl)phenyl)ethylamines (MSPEs) are introduced. The findings reveal that the interaction of PbI2-MSPEs-FAI intermediates is enhanced with the increased polarity of MSPEs, which in turn expedites the nucleation of α-FAPbI3. This leads to the development of high-quality α-FAPbI3 films, characterized by vertical crystal orientation and reduced residual stresses. Additionally, the increased dipole moment of MSPE at perovskite grain boundaries attenuates Coulomb attractions among charged defects and screens carrier capture process, thereby diminishing non-radiative recombination. Utilizing these mechanisms, PSCs treated with highly polar 2-(4-MSPE) achieve an impressive PCE of 25.2% in small-area devices and 20.5% in large-area perovskite solar modules (PSMs) with an active area of 70 cm2. These results demonstrate the effectiveness of this strategy in achieving controllable crystallization of α-FAPbI3, paving the way for scalable-production of high-efficiency PSMs.

14.
Phys Chem Chem Phys ; 15(38): 16214-9, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-23995449

RESUMEN

The basin hopping search algorithm in conjunction with second-order Møller-Plesset perturbation theory is used to determine the lowest energy structures of the radical cation clusters (NH3)n˙(+), (H2O)n˙(+), (HF)n˙(+), (PH3)n˙(+), (H2S)n˙(+) and (HCl)n˙(+), where n = 2-4. The energies of the most stable structures are subsequently evaluated using coupled cluster theory in conjunction with the aug-cc-pVTZ basis set. These cationic clusters can adopt two distinct structural types, with some clusters showing an unusual type of bonding, often referred to as hemibonding, while other clusters undergo proton transfer to give an ion and radical. It is found that proton transfer based structures are preferred by the (NH3)n˙(+), (H2O)n˙(+) and (HF)n˙(+) clusters while hemibonded structures are favoured by (PH3)n˙(+), (H2S)n˙(+) and (HCl)n˙(+). These trends can be attributed to the relative strengths of the molecules and molecular cations as Brønsted bases and acids, respectively, and the strength of the interaction between the ion and radical in the ion-radical clusters.

15.
J Phys Chem A ; 117(25): 5385-91, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23738976

RESUMEN

The structure and bonding in ionized water clusters, (H2O)(n)(+) (n = 3­9), has been studied using the basin hopping search algorithm in combination with quantum chemical calculations. Initially candidate low energy isomers were generated using basin hopping in conjunction with density functional theory. Subsequently, the structures and energies were refined using second order Møller­Plesset perturbation theory and coupled cluster theory, respectively. The lowest energy isomers are found to involve proton transfer to give H(3)O(+) and a OH radical, which are more stable than isomers containing the hemibonded hydrazine-like fragment (H(2)O­OH(2)), with the calculated infrared spectra consistent with experimental data. For (H(2)O)(9)(+) the observation of a new structural motif comprising proton transfer to form H(3)O(+) and OH, but with the OH radical involved in hemibonding to another water molecule is discussed.

16.
ACS Appl Mater Interfaces ; 15(33): 39657-39668, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578345

RESUMEN

Incorporating ITIC derivatives as guest acceptors into binary host systems is an effective strategy for constructing high-performance ternary organic solar cells (TOSCs). In this work, we introduced A-D-A type ITIC derivatives PTBTT-4F (asymmetric) and PTBTP-4F (symmetric) into the PM6:BTP-BO-4F (Y6-BO) binary blend and investigated the impacts of two guest acceptors on the performance of TOSCs. Differentiated device performance was observed, although PTBTT-4F and PTBTP-4F presented similar chemical structures and comparable absorptions. The PTBTT-4F ternary devices exhibited an improved power conversion efficiency (PCE) of 17.67% with increased open circuit (VOC) and current density (JSC), whereas the PTBTP-4F-based ternary devices yielded a relatively lower PCE of 16.34%. PTBTT-4F showed much better compatibility with the host acceptor BTP-BO-4F, so that they formed a well-mixed alloy phase state; more precise phase separation and increased crystallinity were thus induced in the ternary blends, leading to reduced molecular recombination and improved charge mobilities, which contributed to improved fill factors of the ternary devices. In addition, the optimized PTBTT-4F devices exhibited good performance tolerance of the photoactive layer thickness, as they even delivered a PCE of 15.25% when the active layer was as thick as up to ∼300 nm.

17.
J Phys Chem A ; 116(33): 8507-14, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22830636

RESUMEN

The copper-sulfur bond that binds cysteinate to the metal center is a key factor in the spectroscopy of blue copper proteins. We present theoretical calculations describing the electronically excited states of small molecules, including CuSH, CuSCH(3), (CH(3))(2)SCuSH, (imidazole)-CuSH, and (imidazole)(2)-CuSH, derived from the active site of blue copper proteins that contain the copper-sulfur bond in order to identify small molecular systems that have electronic structure that is analogous to the active site of the proteins. Both neutral and cationic forms are studied since these represent the reduced and oxidized forms of the protein, respectively. For CuSH and CuSH(+), excitation energies from time-dependent density functional theory with the B97-1 exchange-correlation functional agree well with the available experimental data and multireference configuration interaction calculations. For the positive ions, the singly occupied molecular orbital is formed from an antibonding combination of a 3d orbital on copper and a 3p(π) orbital on sulfur, which is analogous to the protein. This leads several of the molecules to have qualitatively similar electronic spectra to the proteins. For the neutral molecules, changes in the nature of the low lying virtual orbitals leads the predicted electronic spectra to vary substantially between the different molecules. In particular, addition of a ligand bonded directly to copper results in the low-lying excited states observed in CuSH and CuSCH(3) to be absent or shifted to higher energies.


Asunto(s)
Proteínas Portadoras/química , Cobre/química , Cisteína/química , Compuestos Organometálicos/química , Teoría Cuántica , Peso Molecular , Espectroscopía de Fotoelectrones
18.
J Chem Phys ; 137(13): 134106, 2012 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23039584

RESUMEN

Identifying the energy minima of molecular clusters is a challenging problem. Traditionally, search algorithms such as simulated annealing, genetic algorithms, or basin hopping are usually used in conjunction with empirical force fields. We have implemented a basin hopping search algorithm combined with density functional theory to enable the optimization of molecular clusters without the need for empirical force fields. This approach can be applied to systems where empirical potentials are not available or may not be sufficiently accurate. We illustrate the effectiveness of the method with studies on water, methanol, and water + methanol clusters as well as protonated water and methanol clusters at the B3LYP+D/6-31+G* level of theory. A new lowest energy structure for H(+)(H(2)O)(7) is predicted at the B3LYP+D/6-31+G* level. In all of the protonated mixed water and methanol clusters, we find that H(+) prefers to combine with methanol rather than water in the lowest-energy structures.


Asunto(s)
Algoritmos , Metanol/química , Teoría Cuántica , Agua/química , Estructura Molecular
19.
Phys Chem Chem Phys ; 13(34): 15708-13, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21799989

RESUMEN

The refrigerant 1-1-1-2-tetrafluoroethane (R134a) is being phased out in Europe from 2011. This requires the adoption of alternatives, and the mixture of R134a with carbon dioxide (CO(2)) is a promising candidate. However, limited experimental data currently stymie evaluation of its performance in industrial applications. In this paper, we employ atomistic force fields and the configurational-bias Monte Carlo technique to study the vapour-liquid equilibrium of this mixture. We also characterize the microscopic structure of the mixture, which is not readily available from experiments. At 272 K and 11.55 bar, the average coordination number of the first solvation shell of R134a is 11 and that of CO(2) is eight. CO(2) does not alter the structure of R134a, but its structure is slightly changed, due to the presence of R134a. All pair interactions are sensitive to pressure and are more structured at lower pressure. CO(2) prefers to form clusters of two in the mixture and highly extended or percolating clusters are not found.

20.
J Chem Phys ; 135(17): 174105, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22070290

RESUMEN

The partition function (Q) is a central quantity in statistical mechanics. All the thermodynamic properties can be derived from it. Here we show how the partition function of fluids can be calculated directly from simulations; this allows us to obtain the Helmholtz free energy (F) via F = -k(B)T ln Q. In our approach, we divide the density of states, assigning half of the configurations found in a simulation to a high-energy partition and half to a low-energy partition. By recursively dividing the low-energy partition into halves, we map out the complete density of states for a continuous system. The result allows free energy to be calculated directly as a function of temperature. We illustrate our method in the context of the free energy of water.


Asunto(s)
Simulación de Dinámica Molecular , Agua/química , Algoritmos , Biopolímeros/química , Gases/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA