Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Gene Ther ; 26(12): 504-514, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31570819

RESUMEN

Although therapeutic outcomes have been achieved in hemophilia patients after delivery of clotting factor genes to the liver using adeno-associated virus (AAV) vectors, it is well known that the preclinical results generated from hemophilia animal models have not been directly predictive of successful translation in humans. To address this discrepancy humanized mouse models have recently been used to predict AAV transduction efficiency for human hepatocytes. In this study we evaluated AAV vector transduction from several serotypes in human liver hepatocytes xenografted into chimeric mice. After systemic administration of AAV vectors encoding a GFP transgene in humanized mice, the liver was harvested for either immunohistochemistry staining or flow cytometry assay for AAV human hepatocyte transduction analysis. We observed that AAV7 consistently transduced human hepatocytes more efficiently than other serotypes in both immunohistochemistry assay and flow cytometry analysis. To better assess the future application of AAV7 for systemic administration in the treatment of hemophilia or other liver diseases, we analyzed the prevalence of neutralizing antibodies (NAbs) to AAV7 in sera from healthy subjects and patients with hemophilia. In the general population, the prevalence of NAbs to AAV7 was lower than that of AAV2 or AAV3B. However, a higher prevalence of AAV7 NAbs was found in patients with hemophilia. In summary, results from this study suggest that AAV7 vectors should be considered as an effective vehicle for human liver targeting in future clinical trials.


Asunto(s)
Dependovirus/fisiología , Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/genética , Hemofilia A/inmunología , Hepatocitos/virología , Animales , Anticuerpos Neutralizantes/metabolismo , Estudios de Casos y Controles , Línea Celular , Dependovirus/inmunología , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hepatocitos/citología , Humanos , Ratones , Serogrupo , Transducción Genética
2.
Front Med (Lausanne) ; 9: 880763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991645

RESUMEN

Adeno-associated virus (AAV) gene therapy has been successfully applied in hemophilia patients excluding patients with inhibitors. During the coagulation pathway, activated factor V (FVa) functions downstream as a cofactor of activated factor X (FXa) to amplify thrombin generation. We hypothesize that the expression of FVa via gene therapy can improve hemostasis of both factor IX and FVIII deficiencies, regardless of clotting factor inhibitor. A human FVa (hFVa) expression cassette was constructed, and AAV8 vectors encoding hFVa (AAV8/TTR-hFVa) were intravenously administrated into mice with hemophilia A and B with or without FVIII inhibitors. Hemostasis, including hFVa level, activated partial thromboplastin time (aPTT), tail clip, and the saphenous vein bleeding assay (SVBA), was evaluated. In hemophilia B mice, a dose of 4 × 1013 vg/kg AAV8/TTR-hFVa vectors achieved a complete phenotypic correction over 28 weeks. In hemophilia A mice, hemostasis improvement was also achieved, regardless of FVIII inhibitor development. In vivo hemostasis efficacy was confirmed by tail clip and SVBA. Interestingly, while minimal shortening of aPTT was observed at a lower dose of AAV8 vectors, hemostasis improvement was still achieved via in vivo bleeding assays. Collectively, FVa-based AAV gene therapy shows promise for hemostasis correction in hemophilia, regardless of inhibitor development and no potential risk for thrombosis.

3.
Biomaterials ; 281: 121340, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34998171

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors have been widely used as favored delivery vehicles for the treatment of inherited diseases in clinical trials, including neurological diseases. However, the noninvasive systemic delivery of rAAV to the central nervous system is severely hampered by the blood-brain barrier (BBB). Several approaches have been exploited to enhance AAV vector brain transduction after systemic administration, including genetic modification of AAV capsids and physical methods. However, these approaches are not always predictive of desirable outcomes in humans and induce complications. It is imperative to explore novel strategies to increase the ability of AAV9 to cross the BBB for enhanced brain transduction. Herein, we have conducted a combinatorial in vivo/in vitro phage display library screening in mouse brains and purified AAV9 virions to identify a customized BBB shuttle peptide, designated as PB5-3. The PB5-3 peptide specifically bound to AAV9 virions and enhanced widespread transduction of AAV9 in mouse brains, especially in neuronal cells, after systemic administration. Further study demonstrated that systemic administration of AAV9 vectors encoding IDUA complexed with PB5-3 increased the phenotypic correction in the brains of MPS I mice. Mechanistic studies revealed that the PB5-3 peptide effectively increased AAV9 trafficking and transcytosis efficiency in the human BBB model hCMEC/D3 cell line but did not interfere with AAV9 binding to the receptor terminal N-linked galactosylated glycans. Additionally, the PB5-3 peptide slowed the clearance of AAV9 from blood without hepatic toxicity. This study highlights, for the first time, the potential of this combinatorial approach for the isolation of peptides that interact with specific AAV vectors for enhanced and targeted AAV transduction. This promising approach will open new combined therapeutic avenues and shed light on the potential applications of peptides for the treatment of human diseases in future clinical trials with AAV vector-mediated gene delivery.


Asunto(s)
Barrera Hematoencefálica , Vectores Genéticos , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Dependovirus/genética , Técnicas de Transferencia de Gen , Ratones , Péptidos/metabolismo , Transducción Genética
4.
Front Pharmacol ; 13: 815317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173619

RESUMEN

Adeno-associated virus (AAV) mediated gene therapy has been successfully applied in clinical trials, including hemophilia. Novel AAV vectors have been developed with enhanced transduction and specific tissue tropism. Considering the difference in efficacy of AAV transduction between animal models and patients, the chimeric xenograft mouse model with human hepatocytes has unique advantages of studying AAV transduction efficiency in human hepatocytes. However, it is unclear whether the results in humanized mice can predict AAV transduction efficiency in human hepatocytes. To address this issue, we studied the AAV transduction efficacy in canine hepatocytes in both canine hepatocyte xenografted mice and real dogs. After administration of AAV vectors from different serotypes into canine hepatocyte xenograft mice, AAV8 induced the best canine hepatocyte transduction followed by AAV9, then AAV3, 7, 5 and 2. After administration of AAV/cFIX (cFIX-opt-R338L) vectors in hemophilia B dogs, consistent with the result in chimeric mice, AAV8 induced the highest cFIX protein expression and function, followed by AAV9 and then AAV2. These results suggest that mice xenografted with hepatocytes from different species could be used to predict the AAV liver transduction in real species and highlight this potential platform to explore novel AAV variants for future clinical applications.

5.
Hum Gene Ther ; 33(3-4): 119-130, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617445

RESUMEN

Glucocorticoids have anti-inflammatory and immunosuppressive functions and have commonly been used for preventing liver toxicity after the systemic application of a high dose of adeno-associated virus (AAV) vector for gene therapy. Clinical studies have reported that glucocorticoids have rescued factor IX (FIX) expression in patients with hemophilia B who showed a reduced FIX expression at 6 to 10 weeks post-AAV vector administration. In this study, we explored whether glucocorticoids could affect transgene expression in AAV targeted livers in animal models. When dexamethasone was applied before AAV9/FIX vector administration in the wild-type C57BL/6 mice, FIX expression was much higher than that of the control mice at any time point. More importantly, FIX expression transiently increased after dexamethasone was administered at week 6 or later post-AAV injection regardless of the various dexamethasone treatments applied. The transient enhancement in transgene expression was observed once there were one to several consecutive dexamethasone treatments completed. A similar result was also achieved in other wild-type BALB/c and hemophilia B mice that were treated with AAV9/FIX and dexamethasone. This mechanism study demonstrated that the administration of dexamethasone did not change either AAV genome copy number or transgene expression at the transcription level but transiently decreased interferon beta (IFN-ß) and tumor necrosis factor alpha (TNF-α) expression in the livers of mice at a later time after AAV injection. Next, we studied the effect of dexamethasone on late transgene expression in hemophilia B dogs. Dexamethasone was administered 1 year after AAV9/FIX injection. Inconsistent with the results in mice, no significant change of FIX expression was observed in hemophilia B dogs. In summary, the results from this study indicate that dexamethasone may have various effects on transgene expression in AAV-transduced livers in different species, which provides valuable information about the rational application of dexamethasone in future clinical studies.


Asunto(s)
Dependovirus , Hemofilia B , Animales , Dependovirus/genética , Dependovirus/metabolismo , Dexametasona/farmacología , Perros , Factor IX/genética , Vectores Genéticos/genética , Glucocorticoides/metabolismo , Hemofilia B/genética , Hemofilia B/metabolismo , Hemofilia B/terapia , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Transgenes
6.
Microbiome ; 10(1): 200, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36434690

RESUMEN

BACKGROUND: Intestinal inflammation disrupts the microbiota composition leading to an expansion of Enterobacteriaceae family members (dysbiosis). Associated with this shift in microbiota composition is a profound change in the metabolic landscape of the intestine. It is unclear how changes in metabolite availability during gut inflammation impact microbial and host physiology. RESULTS: We investigated microbial and host lactate metabolism in murine models of infectious and non-infectious colitis. During inflammation-associated dysbiosis, lactate levels in the gut lumen increased. The disease-associated spike in lactate availability was significantly reduced in mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells. Commensal E. coli and pathogenic Salmonella, representative Enterobacteriaceae family members, utilized lactate via the respiratory L-lactate dehydrogenase LldD to increase fitness. Furthermore, mice lacking the lactate dehydrogenase A subunit in intestinal epithelial cells exhibited lower levels of inflammation in a model of non-infectious colitis. CONCLUSIONS: The release of lactate by intestinal epithelial cells during gut inflammation impacts the metabolism of gut-associated microbial communities. These findings suggest that during intestinal inflammation and dysbiosis, changes in metabolite availability can perpetuate colitis-associated disturbances of microbiota composition. Video Abstract.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Ratones , Animales , Disbiosis , Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Lactato Deshidrogenasa 5 , Ratones Endogámicos C57BL , Inflamación/patología , Colitis/patología , Enterobacteriaceae/metabolismo
7.
Biomaterials ; 241: 119906, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32114218

RESUMEN

The recombinant adeno-associated virus (rAAV) vector has been successfully employed in clinical trials for patients with blindness and bleeding diseases as well as neuromuscular disorders. To date, it remains a major challenge to achieve higher transduction efficiency with a lower dose of rAAV vector. Our previous studies have demonstrated that serum proteins are able to directly interact with AAV virions for transduction enhancement. Herein, we explored the effect of the FerA domains, which are derived from ferlin proteins and possess membrane-fusion activity, on AAV transduction. Our results show that FerA domains from dysferlin, myoferlin, and otoferlin proteins are able to directly interact with AAV vectors and enhance AAV transduction in vitro and in mice through either intravenous or intramuscular injections. The enhanced AAV transduction induced by human/mouse FerA domains is achieved in various cell lines and in mice regardless of AAV serotypes. Mechanism studies demonstrated that the FerA domains could effectively enhance the ability of AAV vectors to bind to target cells and cross the vascular barrier. Additionally, FerA domains slow down the blood clearance of AAV. Systemic administration of AAV8/hFIX-FerA complex induced approximate 4-fold more human coagulation factor IX expression and improved hemostasis in hemophilia B mice than that of AAV8/hFIX. Collectively, we show, for the first time, that multiple FerA domains could be tethered on the AAV capsid and enhance widespread tissue distribution in an AAV serotypes-independent manner. This approach therefore holds a promise for future clinical application.


Asunto(s)
Dependovirus , Vectores Genéticos , Animales , Cápside , Dependovirus/genética , Fusión de Membrana , Proteínas de la Membrana , Ratones , Proteínas Musculares , Transducción Genética
8.
Hum Gene Ther ; 31(3-4): 151-162, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31914802

RESUMEN

Adeno-associated viral vectors have been successfully used in laboratory and clinical settings for efficient gene delivery. In these vectors, 96% of the adeno-associated virus (AAV) genome is replaced with a gene cassette of interest, leaving only the 145 bp inverted terminal repeat (ITR) sequences. These cis-elements, primarily from AAV serotype 2, are required for genome rescue, replication, packaging, and vector persistence. Previous work from our lab and others have demonstrated that the AAV ITR2 sequence has inherent transcriptional activity, which may confound intended transgene expression in therapeutic applications. Currently, AAV capsids are extensively study for vector contribution; however, a comprehensive analysis of ITR promoter activity of various AAV serotypes has not been described to date. Here, the transcriptional activity of AAV ITRs from different serotypes (1-4, 6, and 7) was compared in numerous cell lines and a mouse model. Under the conditions used here, all ITRs tested were capable of promoting transgene expression both in vitro and in vivo. However, we observed three classes of AAV ITR expression in vitro. Class I ITRs (AAV2 and 3) generated the highest level, whereas class II (AAV 4) had intermediate levels, and class III (AAV1 and 6) had the lowest levels. These expression levels were consistent across multiple cell lines. Only ITR7 demonstrated cell-type dependent transcriptional activity. In vivo, all classes had promoter activity. Next-generation sequencing revealed multiple transcriptional start sites that originated from the ITR sequence, with most arising from within the Rep binding element. The collective results demonstrate that the serotype ITR sequence may have multiple levels of influence on transgene expression cassettes independent of promoter selection.


Asunto(s)
Dependovirus/genética , Expresión Génica , Vectores Genéticos/genética , Secuencias Repetidas Terminales , Transgenes , Animales , Secuencia de Bases , Línea Celular , Dependovirus/clasificación , Regulación Viral de la Expresión Génica , Técnicas de Transferencia de Gen , Genes Reporteros , Ingeniería Genética , Variación Genética , Vectores Genéticos/biosíntesis , Humanos , Ratones , Conformación de Ácido Nucleico , Plásmidos/genética , Regiones Promotoras Genéticas , Serogrupo , Sitio de Iniciación de la Transcripción , Activación Transcripcional , Transducción Genética
9.
Viruses ; 11(12)2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835440

RESUMEN

Our previous studies have demonstrated that haploid AAV vectors made from capsids of two different serotypes induced high transduction and prevented serotype-specific antibody binding. In this study, we explored the transduction efficiency of several haploid viruses, which were made from the VP1/VP2 of one serotype and VP3 of another compatible serotype. After systemic injection of 2 × 1010 vg of AAV vectors into mice, the haploid AAV vectors, composed of VP1/VP2 from serotypes 8 or 9, and VP3 from AAV2, displayed a two to seven-fold increase in liver transduction compared with those of parental AAV2 vectors. Furthermore, a chimeric AAV2/8 VP1/VP2 with N-terminus of VP1/VP2 from AAV2 and C-terminus (VP3 domain) from AAV8 was constructed, and produced the haploid vector 28m-2VP3 with AAV2 VP3. The haploid 28m-2VP3 vector showed a five-fold higher transduction than that of the vectors composed solely of AAV2 VPs. Remarkably, the 28m-2VP3 vectors also induced a significant increase in transgene expression compared to the vectors composed of AAV8 VP1/VP2 with AAV2 VP3. The results suggest that the difference in the VP1/VP2 N-terminal region between AAV2 and AAV8 may allow better "communication" between the VP1/VP2 N-terminus of AAV2 with its cognate VP3. Similarly, the haploid vectors, VP1/VP2 from serotypes 8 or 9 and VP3 from AAV3, achieved higher transductions in multiple tissue types beyond typical tropism compared with those of AAV3 vectors. Consistently, higher vector genome copy numbers were detected in these tissues, indicating that an incorporation of non-cognate VP1/VP2 might influence the cellular tropism of the haploid vectors. However, there was no significant difference or even decreased transductions when compared with those of parental AAV8 or AAV9 vectors. In summary, these studies provide insight into current development strategies of AAV vectors that can increase AAV transduction across multiple tissues.


Asunto(s)
Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos/genética , Proteínas Recombinantes de Fusión/genética , Transducción Genética , Animales , Dependovirus/clasificación , Femenino , Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Hígado/metabolismo , Ratones , Serogrupo , Transgenes
10.
Hum Gene Ther ; 30(7): 829-840, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30700148

RESUMEN

Glucocorticoids have been commonly used in clinic for their anti-inflammatory and immunosuppressive effects, and it has been proposed that they be used to prevent liver toxicity when systemic administration of adeno-associated virus (AAV) vectors is needed in patients with central nervous system diseases and muscular disorders. Glucocorticoids also enable modulation of vascular permeability. First, this study investigated the impact of dexamethasone on AAV vascular permeability after systemic injection. When a low dose of AAV9 was injected into mice treated with dexamethasone, global transduction and vector biodistribution were not significantly different in most tissues, other than the liver and the heart, when compared to control mice. When AAV9 vectors were used at a high dose, both the transgene expression and the AAV vector genome copy number were significantly decreased in the majority of murine tissues. However, no effect on global transduction was observed when dexamethasone was administered 2 h after AAV vector injection. The study on the kinetics of AAV virus clearance demonstrated that dexamethasone slowed down the clearance of AAV9 in the blood after systemic application. The mechanism study showed that dexamethasone inhibited the enhancement of AAV9 vascular permeability mediated by serum proteins. The findings indicate that dexamethasone is able to inhibit the vascular permeability of AAV and compromise the therapeutic effect after systemic administration of AAV vector. In conclusion, this study provides valuable information for the design of future clinical studies when glucocorticoids are needed to be compatible with the systemic administration of AAV vectors in patients with central nervous system and muscular diseases.


Asunto(s)
Dependovirus/efectos de los fármacos , Dependovirus/genética , Dexametasona/farmacología , Vectores Genéticos/genética , Transducción Genética , Animales , Línea Celular , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Genoma Viral , Ratones , Permeabilidad , Serogrupo , Distribución Tisular/efectos de los fármacos , Transgenes , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA