Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 21(1): 134, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039705

RESUMEN

BACKGROUND: Herbaspirillum seropedicae is a diazotrophic bacterium from the ß-proteobacteria class that colonizes endophytically important gramineous species, promotes their growth through phytohormone-dependent stimulation and can express nif genes and fix nitrogen inside plant tissues. Due to these properties this bacterium has great potential as a commercial inoculant for agriculture. The H. seropedicae SmR1 genome is completely sequenced and annotated but despite the availability of diverse structural and functional analysis of this genome, studies involving small non-coding RNAs (sRNAs) has not yet been done. We have conducted computational prediction and RNA-seq analysis to select and confirm the expression of sRNA genes in the H. seropedicae SmR1 genome, in the presence of two nitrogen independent sources and in presence of naringenin, a flavonoid secreted by some plants. RESULTS: This approach resulted in a set of 117 sRNAs distributed in riboswitch, cis-encoded and trans-encoded categories and among them 20 have Rfam homologs. The housekeeping sRNAs tmRNA, ssrS and 4.5S were found and we observed that a large number of sRNAs are more expressed in the nitrate condition rather than the control condition and in the presence of naringenin. Some sRNAs expression were confirmed in vitro and this work contributes to better understand the post transcriptional regulation in this bacterium. CONCLUSIONS: H. seropedicae SmR1 express sRNAs in the presence of two nitrogen sources and/or in the presence of naringenin. The functions of most of these sRNAs remains unknown but their existence in this bacterium confirms the evidence that sRNAs are involved in many different cellular activities to adapt to nutritional and environmental changes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Herbaspirillum/genética , Nitratos/metabolismo , Fijación del Nitrógeno/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Simulación por Computador , Flavanonas/metabolismo , Flavanonas/farmacología , Herbaspirillum/efectos de los fármacos , Nitratos/farmacología , Riboswitch
2.
Ecotoxicol Environ Saf ; 139: 89-96, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28113116

RESUMEN

Herbicides are continuously used to minimize the loss of crop productivity in agricultural environments. They can, however, cause damage by inhibiting the growth of microbiota via oxidative stress, due to the increased production of reactive oxygen species (ROS). Cellular responses to ROS involve the action of enzymes, including superoxide dismutase (SOD) and catalase (CAT). The objective of this study was to evaluate adaptive responses in Escherichia coli K-12 to paraquat, the active ingredient in the herbicide Gramoxone®. Mutant bacterial strains carrying deletions in genes encoding Mn-SOD (sodA) and Fe-SOD (sodB) were used and resulted in distinct levels of hydrogen peroxide production, interference in malondialdehyde, and viability. Mutations also resulted in different levels of interference with the activity of CAT isoenzymes and in the inactivation of Cu/Zn-SOD activity. These mutations may be responsible for metabolic differences among the evaluated strains, resulting in different patterns of antioxidative responses, depending on mutation background. While damage to the ΔsodB strain was minor at late log phase, the reverse was true at mid log phase for the ΔsodA strain. These results demonstrate the important role of these genes in defense against oxidative stress in different periods of growth. Furthermore, the lack of Cu/Zn-SOD activity in both mutant strains indicated that common metal cofactors likely interfere in SOD activity regulation. These results also indicate that E. coli K-12, a classical non-environmental strain, constitutes a model of phenotypic plasticity for adaptation to a redox-cycling herbicide through redundancy of different isoforms of SOD and CAT enzymes.


Asunto(s)
Catalasa/metabolismo , Escherichia coli K12/genética , Herbicidas/toxicidad , Paraquat/toxicidad , Superóxido Dismutasa/genética , Antioxidantes/metabolismo , Escherichia coli/genética , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/enzimología , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Mutación/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
3.
Sci Rep ; 9(1): 16271, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31700028

RESUMEN

The transition between exponential and stationary phase is a natural phenomenon for all bacteria and requires a massive readjustment of the bacterial transcriptome. Exoribonucleases are key enzymes in the transition between the two growth phases. PNPase, RNase R and RNase II are the major degradative exoribonucleases in Escherichia coli. We analysed the whole transcriptome of exponential and stationary phases from the WT and mutants lacking these exoribonucleases (Δpnp, Δrnr, Δrnb, and ΔrnbΔrnr). When comparing the cells from exponential phase with the cells from stationary phase more than 1000 transcripts were differentially expressed, but only 491 core transcripts were common to all strains. There were some differences in the number and transcripts affected depending on the strain, suggesting that exoribonucleases influence the transition between these two growth phases differently. Interestingly, we found that the double mutant RNase II/RNase R is similar to the RNase R single mutant in exponential phase while in stationary phase it seems to be closer to the RNase II single mutant. This is the first global transcriptomic work comparing the roles of exoribonucleases in the transition between exponential and stationary phase.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Escherichia coli/fisiología , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Mutación , Fosforilación
4.
PLoS One ; 13(4): e0196166, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29694403

RESUMEN

The intense use of herbicides for weed control in agriculture causes selection pressure on soil microbiota and water ecosystems, possibly resulting in changes to microbial processes, such as biogeochemical cycles. These xenobiotics may increase the production of reactive oxygen species and consequently affect the survival of microorganisms, which need to develop strategies to adapt to these conditions and maintain their ecological functionality. This study analyzed the adaptive responses of bacterial isolates belonging to the same species, originating from two different environments (water and soil), and subjected to selection pressure by herbicides. The effects of herbicide Callisto and its active ingredient, mesotrione, induced different adaptation strategies on the cellular, enzymatic, and structural systems of two Bacillus megaterium isolates obtained from these environments. The lipid saturation patterns observed may have affected membrane permeability in response to this herbicide. Moreover, this may have led to different levels of responses involving superoxide dismutase and catalase activities, and enzyme polymorphisms. Due to these response systems, the strain isolated from water exhibited higher growth rates than did the soil strain, in evaluations made in oligotrophic culture media, which would be more like that found in semi-pristine aquatic environments. The influence of the intracellular oxidizing environments, which changed the mode of degradation of mesotrione in our experimental model and produced different metabolites, can also be observed in soil and water at sites related to agriculture. Since the different metabolites may present different levels of toxicity, we suggest that this fact should be considered in studies on the fate of agrochemicals in different environments.


Asunto(s)
Bacillus megaterium/crecimiento & desarrollo , Ciclohexanonas/farmacología , Herbicidas/farmacología , Microbiología del Suelo , Microbiología del Agua , Adaptación Fisiológica , Bacillus megaterium/clasificación , Bacillus megaterium/efectos de los fármacos , Bacillus megaterium/genética , Biodegradación Ambiental , Ecosistema , Peroxidación de Lípido/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA