Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Inorg Chem ; 60(21): 15997-16007, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450017

RESUMEN

The chemical reactivity of NO and its role in several biological processes seem well established. Despite this, the chemical reduction of •NO toward HNO has been historically discarded, mainly because of the negative reduction potential of NO. However, this value and its implications are nowadays under revision. The last reported redox potential, E'(NO,H+/HNO), at micromolar and picomolar concentrations of •NO and HNO, respectively, is between -0.3 and 0 V at pH 7.4. This potential implies that the one-electron-reduction process for NO is feasible under biological conditions and could be promoted by well-known biological reductants with reduction potentials of around -0.3 to -0.5 V. Moreover, the biologically compatible chemical reduction of •NO (nonenzymatic), like direct routes to HNO by alkylamines, aromatic and pseudoaromatic alcohols, thiols, and hydrogen sulfide, has been extensively explored by our group during the past decade. The aim of this work is to use a kinetic modeling approach to analyze electrochemical HNO measurements and to report for the first-time direct reaction rate constants between •NO and moderate reducing agents, producing HNO. These values are between 5 and 30 times higher than the previously reported keff values. On the other hand, we also showed that reaction through successive attack by two NO molecules to biologically compatible compounds could produce HNO. After over 3 decades of intense research, the •NO chemistry is still there, ready to be discovered.


Asunto(s)
Sulfuro de Hidrógeno
2.
Molecules ; 26(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925826

RESUMEN

The circadian clock at the hypothalamic suprachiasmatic nucleus (SCN) entrains output rhythms to 24-h light cycles. To entrain by phase-advances, light signaling at the end of subjective night (circadian time 18, CT18) requires free radical nitric oxide (NO•) binding to soluble guanylate cyclase (sGC) heme group, activating the cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Phase-delays at CT14 seem to be independent of NO•, whose redox-related species were yet to be investigated. Here, the one-electron reduction of NO• nitroxyl was pharmacologically delivered by Angeli's salt (AS) donor to assess its modulation on phase-resetting of locomotor rhythms in hamsters. Intracerebroventricular AS generated nitroxyl at the SCN, promoting phase-delays at CT14, but potentiated light-induced phase-advances at CT18. Glutathione/glutathione disulfide (GSH/GSSG) couple measured in SCN homogenates showed higher values at CT14 (i.e., more reduced) than at CT18 (oxidized). In addition, administration of antioxidants N-acetylcysteine (NAC) and GSH induced delays per se at CT14 but did not affect light-induced advances at CT18. Thus, the relative of NO• nitroxyl generates phase-delays in a reductive SCN environment, while an oxidative favors photic-advances. These data suggest that circadian phase-locking mechanisms should include redox SCN environment, generating relatives of NO•, as well as coupling with the molecular oscillator.


Asunto(s)
Antioxidantes/farmacología , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Oxidación-Reducción/efectos de los fármacos , Acetilcisteína/metabolismo , Acetilcisteína/farmacología , Antioxidantes/metabolismo , Técnicas Biosensibles , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/fisiología , Técnicas Electroquímicas , Glutatión/metabolismo , Glutatión/farmacología , Óxido Nítrico/metabolismo , Nitritos/farmacología , Óxidos de Nitrógeno/metabolismo , Óxidos de Nitrógeno/farmacología , Fotoperiodo
3.
Inorg Chem ; 59(12): 7939-7952, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32436700

RESUMEN

Azanone (HNO, nitroxyl) is a highly reactive molecule that, in the past few years, has drawn significant interest because of its pharmacological properties. However, the understanding of how, when, and where endogenous HNO is produced remains a matter of discussion. In this study, we examined the ability of myoglobin to produce HNO via the peroxidation of hydroxylamine with H2O2 using both experimental and computational approaches. The production of HNO was confirmed using an azanone selective electrochemical method and by the detection of N2O using FTIR. The catalytic capacity of myoglobin was characterized by the determination of the turnover number. The reaction kinetics of the hydroxylamine peroxidation were studied by both electrochemical and UV-vis methods. Further evidence about the reaction mechanism was obtained by EPR spectroscopy. Additionally, quantum mechanical/molecular mechanics experiments were performed to calculate the energy barrier for HNO production and to gain insight into the reaction mechanism. Our results confirm that myoglobin produces HNO via the peroxidation of hydroxylamine with a great catalytic capacity. In addition, our mechanistic study allows us to state that the Mb ferryl state is the most likely intermediate that reacts with hydroxylamine, yielding important evidence for endogenous HNO generation.


Asunto(s)
Hidroxilamina/química , Mioglobina/química , Óxidos de Nitrógeno/síntesis química , Cinética , Simulación de Dinámica Molecular , Estructura Molecular , Óxidos de Nitrógeno/química , Oxidación-Reducción , Teoría Cuántica
4.
Inorg Chem ; 59(22): 16622-16634, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33153263

RESUMEN

Two Co(III) complexes (1Py2 and 2Py2) of new corrole ligands H3L1 (5,15-bis(p-methylcarboxyphenyl)-10-(o-methylcarboxyphenyl)corrole) and H3L2 (5,15-bis(p-nitrophenyl)-10-(o-methylcarboxyphenyl)corrole) with two apical pyridine ligands have been synthesized and thoroughly characterized by cyclic voltammetry, UV-vis-NIR, and EPR spectroscopy, spectroelectrochemistry, single-crystal X-ray diffraction studies, and DFT methods. Complexes 1Py2 and 2Py2 possess much lower oxidation potentials than cobalt(III)-tris-pentafluorophenylcorrole (Co(tpfc)) and similar corroles containing pentafluorophenyl (C6F5) substituents, thus allowing access to high oxidation states of the former metallocorroles using mild chemical oxidants. The spectroscopic (UV-vis-NIR and EPR) and electronic properties of several oxidation states of these complexes have been determined by a combination of the mentioned methods. Complexes 1Py2 and 2Py2 undergo three oxidations within 1.3 V vs FcH+/FcH in MeCN, and we show that both complexes catalyze water oxidation in an MeCN/H2O mixture upon the third oxidation, with kobs (TOF) values of 1.86 s-1 at 1.29 V (1Py2) and 1.67 s-1 at 1.37 V (2Py2). These values are five times higher than previously reported TOF values for C6F5-substituted cobalt(III) corroles, a finding we ascribe to the additional charge in the corrole macrocycle due to the increased oxidation state. This work opens up new possibilities in the study of metallocorrole water oxidation catalysts, particularly by allowing spectroscopic probing of high-oxidation states and showing strong substituent-effects on catalytic activity of the corrole complexes.

5.
J Am Chem Soc ; 141(46): 18521-18530, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31657216

RESUMEN

The first biomimetic water-soluble FeII-porphyrin nitroxyl complexes were obtained and characterized by UV-vis in protonated and deprotonated forms by reduction of previously isolated and characterized FeIITPPSNO•. The pKa involved in the FeII-HNO ⇄ FeII-NO- + H+ equilibrium was estimated to be around 9.7. The FeIITPPSHNO complex spontaneously reoxidizes to the nitrosyl form following a first-order kinetic decay with a measured kinetic constant of k = 0.017 s-1. Experiments show that the HNO adduct undergoes unimolecular homolytic cleavage of the H-NO bond. DFT calculations suggest a phlorin radical intermediate for this reaction. The deprotonated NO- complex resulted to be more stable, with a half-life of about 10 min.

6.
Inorg Chem ; 58(22): 14981-14997, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31693344

RESUMEN

The redox chemistry of H2S with NO and other oxidants containing the NO group is discussed on a mechanistic basis because of the expanding interest in their biological relevance, with an eye open to the chemical differences of H2S and thiols RSH. We focus on the properties of two "crosstalk" intermediates, SNO- (thionitrite) and SSNO- (perthionitrite, nitrosodisulfide) based in the largely controversial status on their identity and chemistry in aqueous/nonaqueous media, en route to the final products N2O, NO2-, NH2OH/NH3, and S8. Thionitrous acid, generated either in the direct reaction of NO + H2S or through the transnitrosation of RSNO's (nitrosothiols) with H2S at pH 7.4, is best described as a mixture of rapidly interconverting isomers, {(H)SNO}. It is reactive in different competitive modes, with a half-life of a few seconds at pH 7.4 for homolytic cleavage of the N-S bond, and could be deprotonated at pH values of up to ca. 10, giving SNO-, a less reactive species than {(H)SNO}. The latter mixture can also react with HS-, giving HNO and HS2- (hydrogen disulfide), a S0(sulfane)-transfer reagent toward {(H)SNO}, leading to SSNO-, a moderately stable species that slowly decomposes in aqueous sulfide-containing solutions in the minute-hour time scale, depending on [O2]. The previous characterization of HSNO/SNO- and SSNO- is critically discussed based on the available chemical and spectroscopic evidence (mass spectrometry, UV-vis, 15N NMR, Fourier transform infrared), together with computational studies including quantum mechanics/molecular mechanics molecular dynamics simulations that provide a structural and UV-vis description of the solvatochromic properties of cis-SSNO- acting as an electron donor in water, alcohols, and aprotic acceptor solvents. In this way, SSNO- is confirmed as the elusive "yellow intermediate" (I412) emerging in the aqueous crosstalk reactions, in contrast with its assignment to polysulfides, HSn-. The analysis extends to the coordination abilities of {(H)SNO}, SNO-, and SSNO- into heme and nonheme iron centers, providing a basis for best unraveling their putative specific signaling roles.

7.
Biometals ; 32(4): 595-610, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30911923

RESUMEN

Coupling the extraction and derivatization of flavonoids to the Citrus processing industry is attractive from both the environmental and economic points of view. In the present work, the flavonoid naringin, obtained by "green" extraction with a water:ethanol mixture from waste grapefruit industry, was hydrolyzed to obtain naringenin. This flavonoid was used to synthesize the complex trans-di(aqua) bis(7-hydroxy-2-(4-hydroxyphenyl)-4-oxo-5-chromanolato) copper (II). This compound was characterized by spectroscopic techniques (UV/Vis, IR, Raman, NMR and EPR), and by thermal analysis (TG and DSC). Then, a monocrystal of the complex obtained by dissolution and recrystallization in DMF was analyzed by single crystal X-ray diffraction. This is the first report of the crystal structure of a Citrus flavonoid complex. Additionally, its antiradical activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was determined and compared with that for naringenin, demonstrating that coordination to copper enhances the antiradicalar activity of naringenin. According to the Mulliken population analysis conducted, by copper favors the delocalization and stabilization of the produced radical, since it acts as an electronic density acceptor.


Asunto(s)
Citrus/química , Cobre/química , Flavanonas/química , Cristalografía por Rayos X , Flavonoides/química
8.
J Am Chem Soc ; 139(41): 14483-14487, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28926245

RESUMEN

Azanone (nitroxyl, HNO) is a highly reactive compound whose biological role is still a matter of debate. One possible route for its formation is NO reduction by biological reductants. These reactions have been historically discarded due to the negative redox potential for the NO,H+/HNO couple. However, the NO to HNO conversion mediated by vitamins C, E, and aromatic alcohols has been recently shown to be feasible from a chemical standpoint. Based on these precedents, we decided to study the reaction of NO with thiols as potential sources of HNO. Using two complementary approaches, trapping by a Mn porphyrin and an HNO electrochemical sensor, we found that under anaerobic conditions aliphatic and aromatic thiols (as well as selenols) are able to convert NO to HNO, albeit at different rates. Further mechanistic analysis using ab initio methods shows that the reaction between NO and the thiol produces a free radical adduct RSNOH•, which reacts with a second NO molecule to produce HNO and a nitrosothiol. The nitrosothiol intermediate reacts further with RSH to produce a second molecule of HNO and RSSR, as previously reported.

10.
J Am Chem Soc ; 137(14): 4720-7, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25773518

RESUMEN

The role of NO in biology is well established. However, an increasing body of evidence suggests that azanone (HNO), could also be involved in biological processes, some of which are attributed to NO. In this context, one of the most important and yet unanswered questions is whether and how HNO is produced in vivo. A possible route concerns the chemical or enzymatic reduction of NO. In the present work, we have taken advantage of a selective HNO sensing method, to show that NO is reduced to HNO by biologically relevant alcohols with moderate reducing capacity, such as ascorbate or tyrosine. The proposed mechanism involves a nucleophilic attack to NO by the alcohol, coupled to a proton transfer (PCNA: proton-coupled nucleophilic attack) and a subsequent decomposition of the so-produced radical to yield HNO and an alkoxyl radical.


Asunto(s)
Alcoholes/química , Ácido Ascórbico/química , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Tirosina/química , Alcoholes/metabolismo , Animales , Ácido Ascórbico/metabolismo , Bovinos , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrógeno/metabolismo , Oxidación-Reducción , Tirosina/metabolismo
11.
Acc Chem Res ; 47(10): 2907-16, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25238532

RESUMEN

Azanone ((1)HNO, nitroxyl) shows interesting yet poorly understood chemical and biological effects. HNO has some overlapping properties with nitric oxide (NO), sharing its biological reactivity toward heme proteins, thiols, and oxygen. Despite this similarity, HNO and NO show significantly different pharmacological effects. The high reactivity of HNO means that studies must rely on the use of donor molecules such as trioxodinitrate (Angeli's salt). It has been suggested that azanone could be an intermediate in several reactions and that it may be an enzymatically produced signaling molecule. The inherent difficulty in detecting its presence unequivocally prevents evidence from yielding definite answers. On the other hand, metalloporphyrins are widely used as chemical models of heme proteins, providing us with invaluable tools for the study of the coordination chemistry of small molecules, like NO, CO, and O2. Studies with transition metal porphyrins have shown diverse mechanistic, kinetic, structural, and reactive aspects related to the formation of nitrosyl complexes. Porphyrins are also widely used in technical applications, especially when coupled to a surface, where they can be used as electrochemical gas sensors. Given their versatility, they have not escaped their role as key players in chemical studies involving HNO. This Account presents the research performed during the last 10 years in our group concerning azanone reactions with iron, manganese, and cobalt porphyrins. We begin by describing their HNO trapping capabilities, which result in formation of the corresponding nitrosyl complexes. Kinetic and mechanistic studies of these reactions show two alternative operating mechanisms: reaction of the metal center with HNO or with the donor. Moreover, we have also shown that azanone can be stabilized by coordination to iron porphyrins using electron-attracting substituents attached to the porphyrin ring, which balance the negatively charged NO¯. Second, we describe an electrochemical HNO sensing device based on the covalent attachment of a cobalt porphyrin to gold. A surface effect affects the redox potentials and allows discrimination between HNO and NO. The reaction with the former is fast, efficient, and selective, lacking spurious signals due to the presence of reactive nitrogen and oxygen species. The sensor is both biologically compatible and highly sensitive (nanomolar). This time-resolved detection allows kinetic analysis of reactions producing HNO. The sensor thus offers excellent opportunities to be used in experiments looking for HNO. As examples, we present studies concerning (a) HNO donation capabilities of new HNO donors as assessed by the sensor, (b) HNO detection as an intermediate in O atom abstraction to nitrite by phosphines, and (c) NO to HNO interconversion mediated by alcohols and thiols. Finally, we briefly discuss the key experiments required to demonstrate endogenous HNO formation to be done in the near future, involving the in vivo use of the HNO sensing device.


Asunto(s)
Metaloporfirinas/química , Metaloporfirinas/metabolismo , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/metabolismo , Técnicas Electroquímicas , Óxido Nítrico/química , Óxido Nítrico/metabolismo
12.
Inorg Chem ; 54(19): 9342-50, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26284848

RESUMEN

The reduction of NO(•) to HNO/NO(-) under biologically compatible conditions has always been thought as unlikely, mostly because of the negative reduction potential: E°(NO(•),H(+)/HNO) = -0.55 V vs NHE at physiological pH. Nonetheless, during the past decade, several works hinted at the possible NO-to-HNO conversion mediated by moderate biological reductants. Very recently, we have shown that the reaction of NO(•) with ascorbate and aromatic alcohols occurs through a proton-coupled nucleophilic attack (PCNA) of the alcohol to NO(•), yielding an intermediate RO-N(H)O(•) species, which further decomposes to release HNO. For the present work, we decided to inspect whether other common biological aromatic alcohols obtained from foods, such as Vitamin E, or used as over-the-counter drugs, like aspirin, are able to undergo the reaction. The positive results suggest that the conversion of NO to HNO could occur far more commonly than previously expected. Taking these as the starting point, we set to review our and other groups' previous reports on the possible NO-to-HNO conversion mediated by biological compounds including phenolic drugs and vitamins, as well as several thiol-bearing compounds. Analysis of revised data prompted us to ask ourselves the following key questions: What are the most likely physio/pathological conditions for NO(•)-to-HNO conversion to take place? Which effects usually attributed to NO(•) are indeed mediated by HNO? These inquiries are discussed in the context of 2 decades of NO and HNO research.


Asunto(s)
Aspirina/química , Óxidos de Nitrógeno/química , Fenoles/química , Vitamina E/química , Radicales Libres/química , Estructura Molecular
13.
J Neurochem ; 129(1): 60-71, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24261470

RESUMEN

Most physiological processes in mammals are synchronized to the daily light:dark cycle by a circadian clock located in the hypothalamic suprachiasmatic nucleus. Signal transduction of light-induced phase advances of the clock is mediated through a neuronal nitric oxide synthase-guanilyl cyclase pathway. We have employed a novel nitric oxide-donor, N-nitrosomelatonin, to enhance the photic synchronization of circadian rhythms in hamsters. The intraperitoneal administration of this drug before a sub-saturating light pulse at circadian time 18 generated a twofold increase of locomotor rhythm phase-advances, having no effect over saturating light pulses. This potentiation was also obtained even when inhibiting suprachiasmatic nitric oxide synthase activity. However, N-nitrosomelatonin had no effect on light-induced phase delays at circadian time 14. The photic-enhancing effects were correlated with an increased suprachiasmatic immunoreactivity of FBJ murine osteosarcoma viral oncogene and period1. Moreover, in vivo nitric oxide release by N-nitrosomelatonin was verified by measuring nitrate and nitrite levels in suprachiasmatic nuclei homogenates. The compound also accelerated resynchronization to an abrupt 6-h advance in the light:dark cycle (but not resynchronization to a 6-h delay). Here, we demonstrate the chronobiotic properties of N-nitrosomelatonin, emphasizing the importance of nitric oxide-mediated transduction for circadian phase advances.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/análogos & derivados , Estimulación Luminosa/métodos , Fotoperiodo , Núcleo Supraquiasmático/metabolismo , Animales , Cricetinae , Masculino , Melatonina/biosíntesis , Mesocricetus , Actividad Motora/fisiología , Compuestos Nitrosos
14.
Inorg Chem ; 53(19): 10456-62, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25215611

RESUMEN

Carbon monoxide releasing molecules (CORMs) have important bactericidal, anti-inflammatory, neuroprotective, and antiapoptotic effects and can be used as tools for CO physiology experiments, including studies on vasodilation. In this context, a new class of CO releasing molecules, based on pentachlorocarbonyliridate(III) derivative have been recently reported. Although there is a growing interest in the characterization of protein-CORMs interactions, only limited structural information on CORM binding to protein and CO release has been available to date. Here, we report six different crystal structures describing events ranging from CORM entrance into the protein crystal up to the CO release and a biophysical characterization by isothermal titration calorimetry, Raman microspectroscopy, and molecular dynamics simulations of the complex between a pentachlorocarbonyliridate(III) derivative and hen egg white lysozyme, a model protein. Altogether, the data indicate the formation of a complex in which the ligand can bind to different sites of the protein surface and provide clues on the mechanism of adduct formation and CO release.


Asunto(s)
Monóxido de Carbono/química , Iridio/química , Muramidasa/química , Compuestos Organometálicos/química , Monóxido de Carbono/metabolismo , Iridio/metabolismo , Simulación de Dinámica Molecular , Muramidasa/metabolismo , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/metabolismo
15.
Inorg Chem ; 53(14): 7351-60, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25001488

RESUMEN

Azanone ((1)HNO, nitroxyl) is a highly reactive molecule with interesting chemical and biological properties. Like nitric oxide (NO), its main biologically related targets are oxygen, thiols, and metalloproteins, particularly heme proteins. As HNO dimerizes with a rate constant between 10(6) and 10(7) M(-1) s(-1), reactive studies are performed using donors, which are compounds that spontaneously release HNO in solution. In the present work, we studied the reaction mechanism and kinetics of two azanone donors Angelís Salt and toluene sulfohydroxamic acid (TSHA) with eight different Mn porphyrins as trapping agents. These porphyrins differ in their total peripheral charge (positively or negatively charged) and in their Mn(III)/Mn(II) reduction potential, showing for each case positive (oxidizing) and negative (reducing) values. Our results show that the reduction potential determines the azanone donor reaction mechanism. While oxidizing porphyrins accelerate decomposition of the donor, reducing porphyrins react with free HNO. Our results also shed light into the donor decomposition mechanism using ab initio methods and provide a thorough analysis of which MnP are the best candidates for azanone trapping and quantification experiments.


Asunto(s)
Hierro/química , Manganeso/química , Óxidos de Nitrógeno/química , Porfirinas/química , Cinética , Oxidación-Reducción
16.
ACS Omega ; 9(3): 4111-4122, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284025

RESUMEN

The 2D heterometallic sodium-palladium(II) coordination polymers with 2-halonicotinates [2-chloropyridine-3-carboxylate (2-chloronicotinate), 2-Clnic- and 2-bromopyridine-3-carboxylate (2-bromonicotinate), 2-Brnic-], {[Na2(H2O)2(µ-H2O)4PdCl2(µ-2-Clnic-N:O')2]}n (1), and {[Na2(H2O)2(µ-H2O)4PdBr2(µ-2-Brnic-N:O')2]·2H2O}n (2) were prepared in aqueous solutions under the presence of NaHCO3, while palladium(II) monomers with the neutral 2-chloronicotinic and 2-bromonicotinic acid ligands, [PdCl2(2-ClnicH-N)2]·2DMF (3) and [PdCl2(2-BrnicH-N)2]·2DMF (4), were prepared in DMF/water mixtures (DMF = N,N'-dimethylformamide). The zigzag chains of water-bridged sodium ions are in turn bridged by [PdCl2(2-Clnic)2]2- moieties in 1 or by [PdBr2(2-Brnic)2]2- moieties in 2, leading to the formation of the infinite 2D coordination networks of 1 or 2. The DFT calculations showed the halosubstituents type (Cl vs Br) does not have an influence on the formation of either trans or cis isomers. The trans isomers were found in all reported compounds; being more stable for about 10 to 15 kJ mol-1. The 2D coordination networks 1 and 2 are more stabilized by the formation of Na-Ocarboxylate bonds, comparing to the stabilization of palladium(II) monomers 3 and 4 by hydrogen-bonding with DMF molecules. The difference in DFT calculated energy stabilization for 1 and 2 is ascribed to the type of halosubstituents and to the presence/absence of lattice water molecules in 1 and 2. The compounds show no antibacterial activity toward reference strains of Escherichia coli and Staphylococcus aureus bacteria and no antiproliferative activity toward bladder (T24) and lung (A549) cancer cell lines.

17.
J Am Chem Soc ; 135(10): 4007-17, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23421316

RESUMEN

The water-soluble ferriheme model Fe(III)(TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe(II)(TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe(III)(TPPS) to the formation of both N2O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N2O. A key pathway to NO formation is nitrite reduction by Fe(II)(TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection.


Asunto(s)
Hemoproteínas/química , Óxido Nítrico/síntesis química , Nitritos/química , Óxidos de Nitrógeno/síntesis química , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Oxidación-Reducción
18.
Anal Chem ; 85(21): 10262-9, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23952708

RESUMEN

Azanone (HNO, nitroxyl) is a highly reactive and short-lived compound with intriguing and highly relevant properties. It has been proposed to be a reaction intermediate in several chemical reactions and an in vivo, endogenously produced key metabolite and/or signaling molecule. In addition, its donors have important pharmacological properties. Therefore, given its relevance and elusive nature (it reacts with itself very quickly), the development of reliable analytical methods for quantitative HNO detection is in high demand for the advancement of future research in this area. During the past few years, several methods were developed that rely on chemical reactions followed by mass spectrometry, high-performance liquid chromatography, UV-vis, or fluorescence-trapping-based methodologies. In this work, our recently developed HNO-sensing electrode, based on the covalent attachment of cobalt(II) 5,10,15,20-tetrakis[3-(p-acetylthiopropoxy)phenyl] porphyrin [Co(P)] to a gold electrode, has been thoroughly characterized in terms of sensibility, accuracy, time-resolved detection, and compatibility with complex biologically compatible media. Our results show that the Co(P) electrode: (i) allows time-resolved detection and kinetic analysis of the electrode response (the underlying HNO-producing reactions can be characterized) (ii) is able to selectively detect and reliably quantify HNO in the 1-1000 nM range, and (iii) has good biological media compatibility (including cell culture), displaying a lack of spurious signals due to the presence of O2, NO, and other reactive nitrogen and oxygen species. In summary, the Co(P) electrode is to our knowledge the best prospect for use in studies investigating HNO-related chemical and biological reactions.


Asunto(s)
Técnicas Electroquímicas/métodos , Óxidos de Nitrógeno/análisis , Cromatografía Líquida de Alta Presión , Fluorescencia , Cinética , Límite de Detección , Espectrometría de Masas , Espectrofotometría Ultravioleta
19.
Acta Crystallogr C ; 69(Pt 1): 47-51, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23282913

RESUMEN

The title compound, [Zn(C(19)H(12)N(5))(2)], crystallizes in the tetragonal space group P4(3)2(1)2, with the monomer residing on a twofold axis. The imidazole N-bound H atoms are disordered over the two positions, with refined occupancies of 0.59 (3) and 0.41 (3). The strong similarities to, and slight differences from, a reported P4(2)2(1)2 polymorph which has a 50% smaller unit-cell volume [Harvey, Baggio, Muñoz & Baggio (2003). Acta Cryst. C59, m283-m285], to which the present structure bears a group-subgroup relationship, are discussed.


Asunto(s)
Iones/química , Compuestos Organometálicos/química , Zinc/química , Cristalización , Estructura Molecular
20.
Acta Crystallogr C ; 69(Pt 4): 351-5, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23579704

RESUMEN

The title ionic compound, [Ni(C12H12N2)(H2O)4]SO4·H2O, is composed of an Ni(II) cation coordinated by a chelating 4,4'-dimethyl-2,2'-bipyridine ligand via its two N atoms [mean Ni-N = 2.056 (2) Å] and by four aqua ligands [mean Ni-O = 2.073 (9) Å], the net charge being balanced by an external sulfate anion. The whole structure is stabilized by a solvent water molecule. Even though the individual constituents are rather featureless, they generate an extremely complex supramolecular structure consisting of a central hydrogen-bonded two-dimensional hydrophilic nucleus made up of complex cations, sulfate anions and coordinated and solvent water molecules, with pendant hydrophobic 4,4'-dimethyl-2,2'-bipyridine ligands which interact laterally with their neighbours via π-π interactions. The structure is compared with closely related analogues in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA