Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Res ; 225: 115597, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863650

RESUMEN

BACKGROUND AND AIM: Placental efflux transporter proteins, such as BCRP, reduce the placental and fetal toxicity of environmental contaminants but have received little attention in perinatal environmental epidemiology. Here, we evaluate the potential protective role of BCRP following prenatal exposure to cadmium, a metal that preferentially accumulates in the placenta and adversely impacts fetal growth. We hypothesized that individuals with a reduced function polymorphism in ABCG2, the gene encoding BCRP, would be most vulnerable to the adverse impacts of prenatal cadmium exposure, notably, smaller placental and fetal size. METHODS: We measured cadmium in maternal urine samples at each trimester and in term placentas from UPSIDE-ECHO study participants (NY, USA; n = 269). We fit adjusted multivariable linear regression and generalized estimating equation models to examine log-transformed urinary and placental cadmium concentrations in relation to birthweight, birth length, placental weight, and fetoplacental weight ratio (FPR) and stratified models by ABCG2 Q141K (C421A) genotype. RESULTS: Overall 17% of participants expressed the reduced-function ABCG2 C421A variant (AA or AC). Placental cadmium concentrations were inversely associated with placental weight (ß = -19.55; 95%CI: -37.06, -2.04) and trended towards higher FPR (ß = 0.25; 95%CI: -0.01, 0.52) with stronger associations in 421A variant infants. Notably, higher placental cadmium concentrations in 421A variant infants were associated with reduced placental weight (ß = -49.42; 95%CI: 98.87, 0.03), and higher FPR (ß = 0.85, 95%CI: 0.18, 1.52), while higher urinary cadmium concentration was associated with longer birth length (ß = 0.98; 95%CI: 0.37, 1.59), lower ponderal index (ß = -0.09; 95%CI: 0.15, -0.03), and higher FPR (ß = 0.42; 95%CI: 0.14, 0.71). CONCLUSIONS: Infants with reduced function ABCG2 polymorphisms may be particularly vulnerable to the developmental toxicity of cadmium as well as other xenobiotics that are BCRP substrates. Additional work examining the influence of placental transporters in environmental epidemiology cohorts is warranted.


Asunto(s)
Cadmio , Placenta , Recién Nacido , Embarazo , Femenino , Humanos , Placenta/metabolismo , Peso al Nacer , Cadmio/toxicidad , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
2.
Molecules ; 26(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34443348

RESUMEN

Many of the current innovations in instrument design have been focused on making them smaller, more rugged, and eventually field transportable. The ultimate application is obvious, carrying the instrument to the field for real time sample analysis without the need for a support laboratory. Real time data are priceless when screening either biological or environmental samples, as mitigation strategies can be initiated immediately upon the discovery that contaminant metals are present in a location they were not intended to be. Additionally, smaller "handheld" instruments generally require less sample for analysis, possibly increasing sensitivity, another advantage to instrument miniaturization. While many other instruments can be made smaller just by using available micro-technologies (e.g., eNose), shrinking an ICP-MS or AES to something someone might carry in a backpack or pocket is now closer to reality than in the past, and can be traced to its origins based on a component-by-component evaluation. While the optical and mass spectrometers continue to shrink in size, the ion/excitation source remains a challenge as a tradeoff exists between excitation capabilities and the power requirements for the plasma's generation. Other supporting elements have only recently become small enough for transport. A systematic review of both where the plasma spectrometer started and the evolution of technologies currently available may provide the roadmap necessary to miniaturize the spectrometer. We identify criteria on a component-by-component basis that need to be addressed in designing a miniaturized device and recognize components (e.g., source) that probably require further optimization. For example, the excitation/ionization source must be energetic enough to take a metal from a solid state to its ionic state. Previously, a plasma required a radio frequency generator or high-power DC source, but excitation can now be accomplished with non-thermal (cold) plasma sources. Sample introduction, for solids, liquids, and gasses, presents challenges for all sources in a field instrument. Next, the interface between source and a mass detector usually requires pressure reduction techniques to get an ion from plasma to the spectrometer. Currently, plasma mass spectrometers are field ready but not necessarily handheld. Optical emission spectrometers are already capable of getting photons to the detector but could eventually be connected to your phone. Inert plasma gas generation is close to field ready if nitrogen generators can be miniaturized. Many of these components are already commercially available or at least have been reported in the literature. Comparisons to other "handheld" elemental analysis devices that employ XRF, LIBS, and electrochemical methods (and their limitations) demonstrate that a "cold" plasma-based spectrometer can be more than competitive. Migrating the cold plasma from an emission only source to a mass spectrometer source, would allow both analyte identification and potentially source apportionment through isotopic fingerprinting, and may be the last major hurdle to overcome. Finally, we offer a possible design to aid in making the cold plasma source more applicable to a field deployment.

3.
Molecules ; 26(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068689

RESUMEN

From human health exposure related to environmental contamination to ancient deep-Earth processes related to differentiation of the Earth's geochemical reservoirs, the adaptability of inductively coupled plasma mass spectrometry (ICP-MS) has proven to be an indispensable standard technique that transcends disciplines. Continued advancements in ICP-MS, including improved auxiliary applications such as laser ablation (LA), ion/liquid chromatography (IC), automated pre-concentration systems (e.g., seaFAST), and improved desolvating nebulizer systems (e.g., Aridus and Apex) have revolutionized our ability to analyze almost any sample matrix with remarkable precision at exceedingly low elemental abundances. The versatility in ICP-MS applications allows for effective interdisciplinary crossover, opening a world of analytical possibilities. In this communication, we discuss the adaptability of geochemical techniques, including sample preparation and analysis, to environmental and biological systems, using Pb isotopes for source apportionment as a primary example.

4.
J Appl Toxicol ; 39(8): 1173-1180, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30963621

RESUMEN

As novel metallodrugs continue to emerge, they are evaluated using models, including zebrafish, that offer unique sublethal endpoints. Testing metal-based anticancer compounds with high-throughput zebrafish toxicological assays requires analytical methods with the sensitivity to detect these sublethal tissue doses in very small sample masses (e.g., egg mass 100 µg). A robust bioanalytical model, zebrafish embryos coupled with inductively coupled plasma-mass spectrometry (ICPMS) for measurement of delivered dose, creates a very effective means for screening metal-based chemotherapeutic agents. In this study, we used ICPMS quantitation with the zebrafish embryo assays to detect metal equivalents at multiple response endpoints for two compounds, the chemotherapeutic agent cisplatin and ruthenium (Ru)-based prospective metallodrug, PMC79. We hypothesized that cisplatin and PMC79 have different mechanisms for inducing apoptosis and result in similar lesions but different potencies following water-borne exposure. An ICPMS method was developed to detect the metal in waterborne solution and tissue (detection limit: 5 parts per trillion for Ru or platinum [Pt]). The Ru-based compound was more potent (LC50 : 7.8 µm) than cisplatin (LC50 : 158 µm) and induced disparate lesions. Lethality from cisplatin exposure exhibited a threshold (values >15 mg/L) while no threshold was observed for delayed hatching (lowest observed adverse effect level 3.75 mg/L cisplatin; 8.7 Pt (ng)/organism). The Ru organometallic did not have a threshold for lethality. Cisplatin-induced delayed hatching was investigated further by larval-Pt distribution and preferentially distributed to the chorion. We propose that zebrafish embryo-larval assays coupled with ICPMS serve as a powerful platform to evaluate relative potency and toxic effects of metallodrug candidates.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Embrión no Mamífero/efectos de los fármacos , Larva/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Rutenio/toxicidad , Pez Cebra , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Bioensayo , Cisplatino/química , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/patología , Desarrollo Embrionario/efectos de los fármacos , Compuestos Organometálicos/química , Rutenio/química , Espectrofotometría Atómica
5.
WIREs Water ; 10(1): e1620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032806

RESUMEN

Flint, Michigan reignited the public discourse surrounding lead contamination in drinking water with Newark, New Jersey recently experiencing its own lead-in-water crisis. Following Flint's experience, the Environmental Protection Agency proposed changes to the Lead and Copper Rule (LCR), but these changes may not produce better detection of contamination. LCR testing requirements were evaluated for their ability to predict or identify problems from the recent (2015-2019) Newark lead exceedance data. LCR compliance and water quality data were obtained from the New Jersey Department of Environmental Protection (NJDEP) website. Between 2002 and 2015, Newark sampled on a reduced sampling plan (50 samples once every 3 years), as required, for lead and copper. These samples were divided between Newark's two water sources with uneven sampling distribution across the city, further limiting the potential to identify a risk of lead in drinking water. Results suggest a more rigorous testing requirement may have identified the problem sooner. Limitations related to the LCR that prevented Newark water suppliers from earlier detection of lead risk will continue under the revised LCR. This article is categorized under:Engineering Water > Water, Health, and SanitationScience of Water > Water Quality.

6.
Toxics ; 11(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37505555

RESUMEN

Cadmium exposure has been associated with adverse perinatal outcomes. One possible mechanism is endocrine disruption. Studies of non-pregnant adults suggest that cadmium impacts androgen production; here, we examined these associations during pregnancy. Participants in the Understanding Pregnancy Signals and Infant Development (UPSIDE) cohort provided biospecimens and questionnaire data in each trimester (n = 272). We quantified urinary cadmium, serum total testosterone (TT), estrone, estradiol, and estriol and serum free testosterone (fT). In adjusted longitudinal models, we examined sex steroid concentrations across pregnancy in relation to specific gravity-adjusted, ln-transformed cadmium concentrations. Additionally, we examined trimester-specific associations and stratified models by fetal sex. Results are presented as percent change (%∆) in hormone concentrations. In longitudinal models, higher cadmium concentrations were associated with lower fT across pregnancy (%∆ = -5.19, 95%CI: -8.33, -1.93), with no differences in other hormones observed. In trimester-specific models, higher cadmium concentrations were associated with lower TT in trimester 2 (%∆ = -15.26, 95%CI: -25.15, -4.06) and lower fT in trimester 3 (%∆ = -14.35, 95%CI: -19.75, -8.59). Associations with TT were stronger in pregnancies carrying female fetuses. Maternal cadmium exposure may be associated with reduced testosterone in pregnancy. Additional work is necessary to understand how alterations in gestational testosterone activity may impact pregnancy and child health.

7.
J Vis Exp ; (182)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35532272

RESUMEN

Metals and metal-based compounds comprise multifarious pharmaco-active and toxicological xenobiotics. From heavy metal toxicity to chemotherapeutics, the toxicokinetics of these compounds have both historical and modern-day relevance. Zebrafish have become an attractive model organism in elucidating pharmaco- and toxicokinetics in environmental exposure and clinical translation studies. Although zebrafish studies have the benefit of being higher-throughput than rodent models, there are several significant constraints to the model. One such limitation is inherent in the waterborne dosing regimen. Water concentrations from these studies cannot be extrapolated to provide reliable internal dosages. Direct measurements of the metal-based compounds allow for a better correlation with compound-related molecular and biological responses. To overcome this limitation for metals and metal-based compounds, a technique was developed to digest zebrafish larval tissue after exposure and quantify metal concentrations within tissue samples by inductively coupled plasma mass spectrometry (ICPMS). ICPMS methods were used to determine the metal concentrations of platinum (Pt) from cisplatin and ruthenium (Ru) from several novel Ru-based chemotherapeutics in zebrafish tissue. Additionally, this protocol distinguished concentrations of Pt that were sequestered in the chorion of the larval compared with the zebrafish tissue. These results indicate that this method can be applied to quantitate the metal dose present in larval tissues. Further, this method may be adjusted to identify specific metals or metal-based compounds in a broad range of exposure and dosing studies.


Asunto(s)
Rutenio , Animales , Cisplatino/toxicidad , Larva , Espectrometría de Masas/métodos , Platino (Metal) , Pez Cebra/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA