Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745307

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Interleucina-9 , Ratones Endogámicos C57BL , Microglía , Sinapsis , Factor de Necrosis Tumoral alfa , Animales , Ratones , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Interleucina-9/metabolismo , Interleucina-9/farmacología , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Factor de Necrosis Tumoral alfa/metabolismo
2.
Eur J Neurol ; 31(3): e16071, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37754770

RESUMEN

BACKGROUND AND PURPOSE: Loss of long-term potentiation (LTP) expression has been associated with a worse disease course in relapsing-remitting multiple sclerosis (RR-MS) and represents a pathophysiological hallmark of progressive multiple sclerosis (PMS). Exercise and physical rehabilitation are the most prominent therapeutic approaches to promote synaptic plasticity. We aimed to explore whether physical exercise is able to improve the expression of LTP-like plasticity in patients with multiple sclerosis (MS). METHODS: In 46 newly diagnosed RR-MS patients, we explored the impact of preventive exercise on LTP-like plasticity as assessed by intermittent theta-burst stimulation. Patients were divided into sedentary or active, based on physical activity performed during the 6 months prior to diagnosis. Furthermore, in 18 patients with PMS, we evaluated the impact of an 8-week inpatient neurorehabilitation program on clinical scores and LTP-like plasticity explored using paired associative stimulation (PAS). Synaptic plasticity expression was compared in patients and healthy subjects. RESULTS: Reduced LTP expression was found in RR-MS patients compared with controls. Exercising RR-MS patients showed a greater amount of LTP expression compared with sedentary patients. In PMS patients, LTP expression was reduced compared with controls and increased after 8 weeks of rehabilitation. In this group of patients, LTP magnitude at baseline predicted the improvement in hand dexterity. CONCLUSIONS: Both preventive exercise and physical rehabilitation may enhance the expression of LTP-like synaptic plasticity in MS, with potential beneficial effects on disability accumulation.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Potenciación a Largo Plazo/fisiología , Estimulación Magnética Transcraneal , Plasticidad Neuronal/fisiología , Ejercicio Físico , Potenciales Evocados Motores/fisiología
3.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791290

RESUMEN

MiR-142-3p has recently emerged as key factor in tailoring personalized treatments for multiple sclerosis (MS), a chronic autoimmune demyelinating disease of the central nervous system (CNS) with heterogeneous pathophysiology and an unpredictable course. With its involvement in a detrimental regulatory axis with interleukin-1beta (IL1ß), miR-142-3p orchestrates excitotoxic synaptic alterations that significantly impact both MS progression and therapeutic outcomes. In this study, we investigated for the first time the influence of individual genetic variability on the miR-142-3p excitotoxic effect in MS. We specifically focused on the single-nucleotide polymorphism Val66Met (rs6265) of the brain-derived neurotrophic factor (BDNF) gene, known for its crucial role in CNS functioning. We assessed the levels of miR-142-3p and IL1ß in cerebrospinal fluid (CSF) obtained from a cohort of 114 patients with MS upon diagnosis. By stratifying patients according to their genetic background, statistical correlations with clinical parameters were performed. Notably, in Met-carrier patients, we observed a decoupling of miR-142-3p levels from IL1ß levels in the CSF, as well as from of disease severity (Expanded Disability Status Score, EDSS; Multiple Sclerosis Severity Score, MSSS; Age-Related Multiple Sclerosis Severity Score, ARMSS) and progression (Progression Index, PI). Our discovery of the interference between BDNF Val66Met polymorphism and the synaptotoxic IL1ß-miR-142-3p axis, therefore hampering miR-142-3p action on MS course, provides valuable insights for further development of personalized medicine in the field.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Interleucina-1beta , MicroARNs , Esclerosis Múltiple , Polimorfismo de Nucleótido Simple , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , MicroARNs/genética , Femenino , Masculino , Adulto , Esclerosis Múltiple/genética , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/patología , Persona de Mediana Edad , Interleucina-1beta/genética , Interleucina-1beta/líquido cefalorraquídeo , Índice de Severidad de la Enfermedad , Predisposición Genética a la Enfermedad
4.
J Neurochem ; 166(3): 534-546, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37332201

RESUMEN

The neuroinflammatory process characterizing multiple sclerosis (MS) is associated with changes in excitatory synaptic transmission and altered central concentrations of the primary excitatory amino acid, L-glutamate (L-Glu). Recent findings report that cerebrospinal fluid (CSF) levels of L-Glu positively correlate with pro-inflammatory cytokines in MS patients. However, to date, there is no evidence about the relationship between the other primary excitatory amino acid, L-aspartate (L-Asp), its derivative D-enantiomer, D-aspartate, and the levels of pro-inflammatory and anti-inflammatory cytokines in the CSF of MS. In the present study, we measured by HPLC the levels of these amino acids in the cortex, hippocampus, cerebellum, and spinal cord of mice affected by experimental autoimmune encephalomyelitis (EAE). Interestingly, in support of glutamatergic neurotransmission abnormalities in neuroinflammatory conditions, we showed reduced L-Asp levels in the cortex and spinal cord of EAE mice and increased D-aspartate/total aspartate ratio within the cerebellum and spinal cord of these animals. Additionally, we found significantly decreased CSF levels of L-Asp in both relapsing-remitting (n = 157) MS (RR-MS) and secondary progressive/primary progressive (n = 22) (SP/PP-MS) patients, compared to control subjects with other neurological diseases (n = 40). Importantly, in RR-MS patients, L-Asp levels were correlated with the CSF concentrations of the inflammatory biomarkers G-CSF, IL-1ra, MIP-1ß, and Eotaxin, indicating that the central content of this excitatory amino acid, as previously reported for L-Glu, reflects a neuroinflammatory environment in MS. In keeping with this, we revealed that CSF L-Asp levels were positively correlated with those of L-Glu, highlighting the convergent variation of these two excitatory amino acids under inflammatory synaptopathy occurring in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Ácido Aspártico/líquido cefalorraquídeo , Ácido D-Aspártico/metabolismo , Médula Espinal/metabolismo , Encéfalo/metabolismo , Transmisión Sináptica , Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Citocinas/metabolismo
5.
Mult Scler ; 29(4-5): 512-520, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803228

RESUMEN

BACKGROUND: Individual genetic variability may influence the course of multiple sclerosis (MS). The interleukin (IL)-8C>T rs2227306 single nucleotide polymorphism (SNP) regulates IL-8 activity in other clinical conditions; however, its role in MS has never been investigated. OBJECTIVES: To explore the association between IL-8 SNP rs2227306, cerebrospinal fluid (CSF) IL-8 concentrations, clinical, and radiological characteristics in a group of newly diagnosed MS patients. METHODS: In 141 relapsing-remitting (RR)-MS patients, rs2227306 polymorphism, CSF levels of IL-8, clinical, and demographical characteristics were determined. In 50 patients, structural magnetic resonance imaging (MRI) measures were also assessed. RESULTS: An association between CSF IL-8 and Expanded Disability Status Scale (EDSS) at diagnosis was found in our set of patients (r = 0.207, p = 0.014). CSF IL-8 concentrations were significantly higher in patients carrying the T variant of rs2227306 (p = 0.004). In the same group, a positive correlation emerged between IL-8 and EDSS (r = 0.273, p = 0.019). Finally, a negative correlation between CSF levels of IL-8 and cortical thickness emerged in rs2227306T carriers (r = -0.498, p = 0.005). CONCLUSION: We describe for the first time a role of SNP rs2227306 of IL-8 gene in regulating the expression and the activity of this inflammatory cytokine in MS.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Interleucina-8/genética , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Citocinas , Imagen por Resonancia Magnética
6.
Mult Scler ; 29(11-12): 1383-1392, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37698019

RESUMEN

BACKGROUND: The role of vaccine-mediated inflammation in exacerbating multiple sclerosis (MS) is a matter of debate. OBJECTIVE: In this cross-sectional study, we compared the cerebrospinal fluid (CSF) inflammation associated with MS relapses or anti-COVID-19 mRNA vaccinations in relapsing-remitting multiple sclerosis (RRMS). METHODS: We dosed CSF cytokines in 97 unvaccinated RRMS patients with clinical relapse within the last 100 days. In addition, we enrolled 29 stable RRMS and 24 control patients receiving COVID-19 vaccine within the last 100 days. RESULTS: In RRMS patients, a negative association was found between relapse distance and the CSF concentrations of the pro-inflammatory cytokines interleukin (IL)-2 (beta = -0.265, p = 0.016), IL-6 (beta = -0.284, p = 0.01), and IL-17 (beta = -0.224, p = 0.044). Conversely, vaccine distance positively correlated with a different set of cytokines including IL-12 (beta = 0.576, p = 0.002), IL-13 (beta = 0.432, p = 0.027), and IL-1ra (beta = 0.387, p = 0.05). These associations were significant also considering other clinical characteristics. No significant associations emerged between vaccine distance and CSF molecules in the control group. CONCLUSION: Vaccine for COVID-19 induces a central inflammatory response in RRMS patients that is qualitatively different from that associated with disease relapse.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Vacunas contra la COVID-19/efectos adversos , Estudios Transversales , Citocinas , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Enfermedad Crónica , Inflamación , Vacunación/efectos adversos , Recurrencia , ARN Mensajero
7.
Neurobiol Dis ; 172: 105817, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35835361

RESUMEN

BACKGROUND: Elevated levels of specific proinflammatory molecules in the cerebrospinal fluid (CSF) have been associated with disability progression, enhanced neurodegeneration and higher incidence of mood disorders in people with multiple sclerosis (MS). Studies in animal models of MS suggest that preventive exercise may play an immunomodulatory activity, with beneficial effects on both motor deficits and behavioral alterations. Here we explored the impact of lifestyle physical activity on clinical presentation and associated central inflammation in a large group of newly diagnosed patients with MS. Furthermore, we addressed the causal link between exercise-mediated immunomodulation and mood symptoms in the animal setting. METHODS: A cross-sectional study was conducted on 235 relapsing-remitting MS patients at the time of the diagnosis. Patients were divided into 3 groups ("sedentary", "lifestyle physical activity" and "exercise") according to the level of physical activity in the six months preceding the evaluation. Patients underwent clinical, neuropsychological and psychiatric evaluation, magnetic resonance imaging and lumbar puncture for diagnostic purposes. The CSF levels of proinflammatory and anti-inflammatory cytokines were analyzed and compared with a group of 80 individuals with non-inflammatory and non-degenerative diseases. Behavioral and electrophysiological studies were carried out in control mice receiving intracerebral injection of IL-2 or vehicle. Behavior was also assessed in mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, reared in standard (sedentary group) or running wheel-equipped (exercise group) cages. RESULTS: In exercising MS patients, depression and anxiety were reduced compared to sedentary patients. The CSF levels of the interleukin-2 and 6 (IL-2, IL-6) were increased in MS patients compared with control individuals. In MS subjects exercise was associated with normalized CSF levels of IL-2. In EAE mice exercise started before disease onset reduced both behavioral alterations and striatal IL-2 expression. Notably, a causal role of IL-2 in mood disorders was shown. IL-2 administration in control healthy mice induced anxious- and depressive-like behaviors and impaired type-1 cannabinoid (CB1) receptor-mediated neurotransmission at GABAergic synapses, mimicking EAE-induced synaptic dysfunction. CONCLUSIONS: Our results indicate an immunomodulatory effect of exercise in MS patients, associated with reduced CSF expression of IL-2, which might result in reduced mood disorders. These data suggest that exercise in the early stages may act as a disease-modifying therapy in MS although further longitudinal studies are needed to clarify this issue.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Estudios Transversales , Encefalomielitis Autoinmune Experimental/patología , Humanos , Interleucina-2/efectos adversos , Ratones , Ratones Endogámicos C57BL , Trastornos del Humor/etiología
8.
Neuropathol Appl Neurobiol ; 48(2): e12765, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34490928

RESUMEN

AIM: We recently proposed miR-142-3p as a molecular player in inflammatory synaptopathy, a new pathogenic hallmark of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE), that leads to neuronal loss independently of demyelination. MiR-142-3p seems to be unique among potential biomarker candidates in MS, since it is an inflammatory miRNA playing a dual role in the immune and central nervous systems. Here, we aimed to verify the impact of miR-142-3p circulating in the cerebrospinal fluid (CSF) of MS patients on clinical parameters, neuronal excitability and its potential interaction with disease modifying therapies (DMTs). METHODS AND RESULTS: In a cohort of 151 MS patients, we found positive correlations between CSF miR-142-3p levels and clinical progression, IL-1ß signalling as well as synaptic excitability measured by transcranial magnetic stimulation. Furthermore, therapy response of patients with 'low miR-142-3p' to dimethyl fumarate (DMF), an established disease-modifying treatment (DMT), was superior to that of patients with 'high miR-142-3p' levels. Accordingly, the EAE clinical course of heterozygous miR-142 mice was ameliorated by peripheral DMF treatment with a greater impact relative to their wild type littermates. In addition, a central protective effect of this drug was observed following intracerebroventricular and ex vivo acute treatments of EAE wild type mice, showing a rescue of miR-142-3p-dependent glutamatergic alterations. By means of electrophysiology, molecular and biochemical analysis, we suggest miR-142-3p as a molecular target of DMF. CONCLUSION: MiR-142-3p is a novel and potential negative prognostic CSF marker of MS and a promising tool for identifying personalised therapies.


Asunto(s)
Encefalomielitis Autoinmune Experimental/líquido cefalorraquídeo , MicroARNs/líquido cefalorraquídeo , Esclerosis Múltiple/líquido cefalorraquídeo , Transducción de Señal/fisiología , Adulto , Animales , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Persona de Mediana Edad , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Estudios Prospectivos
9.
Brain Behav Immun ; 98: 13-27, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34391817

RESUMEN

Exercise is increasingly recommended as a supportive therapy for people with Multiple Sclerosis (pwMS). While clinical research has still not disclosed the real benefits of exercise on MS disease, animal studies suggest a substantial beneficial effect on motor disability and pathological hallmarks such as central and peripheral dysregulated immune response. The hippocampus, a core area for memory formation and learning, is a brain region involved in MS pathophysiology. Human and rodent studies suggest that the hippocampus is highly sensitive to the effects of exercise, the impact of which on MS hippocampal damage is still elusive. Here we addressed the effects of chronic voluntary exercise on hippocampal function and damage in experimental autoimmune encephalomyelitis (EAE), animal model of MS. Mice were housed in standard or wheel-equipped cages starting from the day of immunization and throughout the disease course. Although running activity was reduced during the symptomatic phase, exercise significantly ameliorated motor disability. Exercise improved cognition that was assessed through the novel object recognition test and the nest building in presymptomatic and acute stages of the disease, respectively. In the acute phase exercise was shown to prevent EAE-induced synaptic plasticity abnormalities in the CA1 area, by promoting the survival of parvalbumin-positive (PV+) interneurons and by attenuating inflammation. Indeed, exercise significantly reduced microgliosis in the CA1 area, the expression of tumour necrosis factor (TNF) in microglia and, to a lesser extent, the hippocampal level of interleukin 1 beta (IL-1ß), previously shown to contribute to aberrant synaptic plasticity in the EAE hippocampus. Notably, exercise exerted a precocious and long-lasting mitigating effect on microgliosis that preceded its neuroprotective action, likely underlying the improved cognitive function observed in both presymptomatic and acute phase EAE mice. Overall, these data provide evidence that regular exercise improves cognitive function and synaptic and neuronal pathology that typically affect EAE/MS brains.


Asunto(s)
Personas con Discapacidad , Encefalomielitis Autoinmune Experimental , Trastornos Motores , Animales , Hipocampo , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL
10.
Int J Mol Sci ; 21(19)2020 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-33020408

RESUMEN

Extracellular vesicles (EVs) represent a new reality for many physiological and pathological functions as an alternative mode of intercellular communication. This is due to their capacity to interact with distant recipient cells, usually involving delivery of the EVs contents into the target cells. Intensive investigation has targeted the role of EVs in different pathological conditions, including multiple sclerosis (MS). MS is a chronic inflammatory and neurodegenerative disease of the nervous system, one of the main causes of neurological disability in young adults. The fine interplay between the immune and nervous systems is profoundly altered in this disease, and EVs seems to have a relevant impact on MS pathogenesis. Here, we provide an overview of both clinical and preclinical studies showing that EVs released from blood-brain barrier (BBB) endothelial cells, platelets, leukocytes, myeloid cells, astrocytes, and oligodendrocytes are involved in the pathogenesis of MS and of its rodent model experimental autoimmune encephalomyelitis (EAE). Most of the information points to an impact of EVs on BBB damage, on spreading pro-inflammatory signals, and altering neuronal functions, but EVs reparative function of brain damage deserves attention. Finally, we will describe recent advances about EVs as potential therapeutic targets and tools for therapeutic intervention in MS.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/genética , Esclerosis Múltiple/genética , Astrocitos/metabolismo , Plaquetas/metabolismo , Barrera Hematoencefálica/patología , Células Endoteliales/patología , Vesículas Extracelulares/metabolismo , Humanos , Leucocitos/metabolismo , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Células Mieloides/metabolismo , Oligodendroglía/metabolismo
11.
Neurobiol Dis ; 108: 45-53, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28757328

RESUMEN

Interferon-γ (IFN-γ) has been implicated in the pathogenesis of multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The type-1 cannabinoid receptors (CB1Rs) are heavily involved in MS pathophysiology, and a growing body of evidence suggests that mood disturbances reflect specific effects of proinflammatory cytokines on neuronal activity. Here, we investigated whether IFN-γ could exert a role in the anxiety- and depressive-like behavior observed in mice with EAE, and in the modulation of CB1Rs. Anxiety and depression in fact are often diagnosed in MS, and have already been shown to depend on cannabinoid system. We performed biochemical, behavioral and electrophysiological experiments to assess the role of IFN-γ on mood control and on synaptic transmission in mice. Intracerebroventricular delivery of IFN-γ caused a depressive- and anxiety-like behavior in mice, associated with the selective dysfunction of CB1Rs controlling GABA transmission in the striatum. EAE induction was associated with increased striatal expression of IFN-γ, and with CB1R transmission deficits, which were rescued by pharmacological blockade of IFN-γ. IFN-γ was unable to replicate the effects of EAE on excitatory and inhibitory transmission in the striatum, but mimicked the effects of EAE on CB1R function in this brain area. Overall these results indicate that IFN-γ exerts a relevant control on mood, through the modulation of CB1R function. A better understanding of the biological pathways underling the psychological disorders during neuroinflammatory conditions is crucial for developing effective therapeutic strategies.


Asunto(s)
Ansiedad/inducido químicamente , Cuerpo Estriado/efectos de los fármacos , Depresión/inducido químicamente , Interferón gamma/farmacología , Nootrópicos/farmacología , Receptor Cannabinoide CB1/metabolismo , Afecto/efectos de los fármacos , Afecto/fisiología , Animales , Ansiedad/metabolismo , Cuerpo Estriado/metabolismo , Depresión/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Factores Inmunológicos/farmacología , Infusiones Intraventriculares , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Péptidos , Distribución Aleatoria , Técnicas de Cultivo de Tejidos
12.
Neural Regen Res ; 19(8): 1768-1771, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103243

RESUMEN

In multiple sclerosis, only immunomodulatory and immunosuppressive drugs are recognized as disease-modifying therapies. However, in recent years, several data from pre-clinical and clinical studies suggested a possible role of physical exercise as disease-modifying therapy in multiple sclerosis. Current evidence is sparse and often conflicting, and the mechanisms underlying the neuroprotective and antinflammatory role of exercise in multiple sclerosis have not been fully elucidated. Data, mainly derived from pre-clinical studies, suggest that exercise could enhance long-term potentiation and thus neuroplasticity, could reduce neuroinflammation and synaptopathy, and dampen astrogliosis and microgliosis. In humans, most trials focused on direct clinical and MRI outcomes, as investigating synaptic, neuroinflammatory, and pathological changes is not straightforward compared to animal models. The present review analyzed current evidence and limitations in research concerning the potential disease-modifying therapy effects of exercise in multiple sclerosis in animal models and human studies.

13.
Parkinsonism Relat Disord ; 122: 106071, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432021

RESUMEN

In Parkinson's disease (PD), neuroinflammation may be involved in the pathogenesis of mood disorders, contributing to the clinical heterogeneity of the disease. The cerebrospinal fluid (CSF) levels of interleukin (IL)-1ß, IL-2, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, interferon (IFN)γ, macrophage inflammatory protein 1-alpha (MIP-1a), MIP-1b, granulocyte colony stimulating factor (GCSF), eotaxin, tumor necrosis factor (TNF), and monocyte chemoattractant protein 1 (MCP-1), were assessed in 45 newly diagnosed and untreated PD patients and in 44 control patients. Spearman's correlations were used to explore possible associations between CSF cytokines and clinical variables including mood. Benjamini-Hochberg (B-H) correction for multiple comparisons was applied. Linear regression was used to test significant associations correcting for other clinical variables. In PD patients, higher CSF concentrations of the inflammatory molecules IL-6, IL-9, IFNγ, and GCSF were found (all B-H corrected p < 0.02). Significant associations were found between BDI-II and the levels of IL-6 (Beta = 0.438; 95%CI 1.313-5.889; p = 0.003) and IL-8 (Beta = 0.471; 95%CI 0.185-0.743; p = 0.002). Positive associations were also observed between STAI-Y state and both IL-6 (Beta = 0.452; 95%CI 1.649-7.366; p = 0.003), and IL-12 (Beta = 0.417; 95%CI 2.238-13.379; p = 0.007), and between STAI-Y trait and IL-2 (Beta = 0.354; 95%CI 1.923-14.796; p = 0.012), IL-6 (Beta = 0.362; 95%CI 0.990-6.734; p = 0.01), IL-8 (Beta = 0.341; 95%CI 0.076-0.796; p = 0.019), IL-12 (Beta = 0.328; 95%CI 0.975-12.135; p = 0.023), and IL-17 (Beta = 0.334; 95CI 0.315-4.455; p = 0.025). An inflammatory CSF milieu may be associated with depression and anxiety in the early phases of PD, supporting a role of neuroinflammation in the pathogenesis of mood disturbances.


Asunto(s)
Citocinas , Trastornos del Humor , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/líquido cefalorraquídeo , Enfermedad de Parkinson/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Anciano , Citocinas/líquido cefalorraquídeo , Trastornos del Humor/líquido cefalorraquídeo , Trastornos del Humor/etiología , Trastornos del Humor/diagnóstico , Inflamación/líquido cefalorraquídeo , Enfermedades Neuroinflamatorias/líquido cefalorraquídeo , Enfermedades Neuroinflamatorias/etiología
14.
Front Neurol ; 15: 1326506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585351

RESUMEN

Introduction: The visual system is a prominent site of damage in MS since the earliest phases of the disease. Altered low-contrast visual acuity (LCVA) test has been associated with visual impairment and retinal degeneration, predicting medium- and long-term disability. However, it is unclear whether LCVA may also represent a reliable measure of neuroinflammation and a predictor of disease evolution in the very early stages of MS. Methods: We explored in a group of 76 consecutive newly diagnosed relapsing-remitting MS (RR-MS) patients without visual impairment or altered visual evoked potentials, the association between LCVA scores at 2.5% and 1.25% and clinical characteristics, including prospective disability evaluated after 1- and 2 years of follow-up. Associations between LCVA and the CSF levels of IL-10 at diagnosis were also analyzed. Results: A negative correlation was found between LCVA at 2.5% and Expanded Disability Status Scale (EDSS) evaluated at first (Spearman's Rho = -0.349, p = 0.005, n = 62) and second year (Spearman's Rho = -0.418, p < 0.001, n = 62) of follow-up, and negative correlations were found with Multiple Sclerosis Severity Score (MSSS) at first (Spearman's Rho = -0.359, p = 0.004, n = 62) and second year (Spearman's Rho = -0.472, p < 0.001, n = 62). All the data were confirmed by a mixed effect model, considering other clinical variables. A positive correlation was found between the CSF concentrations of IL-10 and LCVA at 2.5% (Spearman's Rho = 0.272, p = 0.020, n = 76), and 1.25% (Spearman's Rho, = 0.276, p = 0.018, n = 76), also evidenced in a linear regression. Discussion: In MS patients at diagnosis, altered LCVA may be associated with CSF inflammation and represent a useful parameter to identify patients with worse disease course.

15.
Front Immunol ; 15: 1416133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911847

RESUMEN

Background: Secondary progressive multiple sclerosis (SPMS) is defined by the irreversible accumulation of disability following a relapsing-remitting MS (RRMS) course. Despite treatments advances, a reliable tool able to capture the transition from RRMS to SPMS is lacking. A T cell chimeric MS model demonstrated that T cells derived from relapsing patients exacerbate excitatory transmission of central neurons, a synaptotoxic event absent during remitting stages. We hypothesized the re-emergence of T cell synaptotoxicity during SPMS and investigated the synaptoprotective effects of siponimod, a sphingosine 1-phosphate receptor (S1PR) modulator, known to reduce grey matter damage in SPMS patients. Methods: Data from healthy controls (HC), SPMS patients, and siponimod-treated SPMS patients were collected. Chimeric experiments were performed incubating human T cells on murine cortico-striatal slices, and recording spontaneous glutamatergic activity from striatal neurons. Homologous chimeric experiments were executed incubating EAE mice T cells with siponimod and specific S1PR agonists or antagonists to identify the receptor involved in siponimod-mediated synaptic recovery. Results: SPMS patient-derived T cells significantly increased the striatal excitatory synaptic transmission (n=40 synapses) compared to HC T cells (n=55 synapses), mimicking the glutamatergic alterations observed in active RRMS-T cells. Siponimod treatment rescued SPMS T cells synaptotoxicity (n=51 synapses). Homologous chimeric experiments highlighted S1P5R involvement in the siponimod's protective effects. Conclusion: Transition from RRMS to SPMS involves the reappearance of T cell-mediated synaptotoxicity. Siponimod counteracts T cell-induced excitotoxicity, emphasizing the significance of inflammatory synaptopathy in progressive MS and its potential as a promising pharmacological target.


Asunto(s)
Azetidinas , Compuestos de Bencilo , Esclerosis Múltiple Crónica Progresiva , Sinapsis , Linfocitos T , Humanos , Animales , Ratones , Femenino , Esclerosis Múltiple Crónica Progresiva/inmunología , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/efectos de los fármacos , Azetidinas/farmacología , Azetidinas/uso terapéutico , Compuestos de Bencilo/farmacología , Compuestos de Bencilo/uso terapéutico , Masculino , Adulto , Sinapsis/metabolismo , Persona de Mediana Edad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Ratones Endogámicos C57BL , Receptores de Esfingosina-1-Fosfato/metabolismo , Transmisión Sináptica/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología
16.
Front Mol Neurosci ; 17: 1430080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39169949

RESUMEN

Proinflammatory cytokines are implicated in promoting neurodegeneration in multiple sclerosis (MS) by affecting excitatory and inhibitory transmission at central synapses. Conversely, the synaptic effects of anti-inflammatory molecules remain underexplored, despite their potential neuroprotective properties and their presence in the cerebrospinal fluid (CSF) of patients. In a study involving 184 newly diagnosed relapsing-remitting (RR)-MS patients, we investigated whether CSF levels of the anti-inflammatory interleukin (IL)-10 were linked to disease severity and neurodegeneration measures. Additionally, we examined IL-10 impact on synaptic transmission in striatal medium spiny neurons and its role in counteracting inflammatory synaptopathy induced by IL-1ß in female C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Our findings revealed a significant positive correlation between IL-10 CSF levels and changes in EDSS (Expanded Disability Status Scale) scores one year after MS diagnosis. Moreover, IL-10 levels in the CSF were positively correlated with volumes of specific subcortical brain structures, such as the nucleus caudate. In both MS patients' CSF and EAE mice striatum, IL-10 and IL-1ß expressions were upregulated, suggesting possible antagonistic effects of these cytokines. Notably, IL-10 exhibited the ability to decrease glutamate transmission, increase GABA transmission in the striatum, and reverse IL-1ß-induced abnormal synaptic transmission in EAE. In conclusion, our data suggest that IL-10 exerts direct neuroprotective effects in MS patients by modulating both excitatory and inhibitory transmission and attenuating IL-1ß-induced inflammatory synaptopathy. These findings underscore the potential therapeutic significance of IL-10 in mitigating neurodegeneration in MS.

17.
Biomedicines ; 11(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672686

RESUMEN

BACKGROUND: Osteopontin, an extracellular matrix protein involved in bone remodeling, tissue repair and inflammation, has previously been associated with increased inflammation and neurodegeneration in multiple sclerosis (MS), promoting a worse disease course. Osteopontin is also likely involved in acute MS relapses. METHODS: In 47 patients with relapsing-remitting MS, we explored the correlation between the time elapsed between the last clinical relapse and lumbar puncture, and the cerebrospinal fluid (CSF) levels of osteopontin and a group of inflammatory cytokines and adipokines such as resistin, plasminogen activator inhibitor-1, osteoprotegerin, interleukin (IL)-1ß, IL-2, IL-6 and IL-1 receptor antagonist (IL-1ra). We also analyzed the correlations between CSF levels of osteopontin and the other CSF molecules considered. RESULTS: Osteopontin CSF concentrations were higher in patients with a shorter time interval between the last clinical relapse and CSF withdrawal. In addition, CSF levels of osteopontin were positively correlated with the proinflammatory cytokines IL-2 and IL-6 and negatively correlated with the anti-inflammatory molecule IL-1ra. CONCLUSIONS: Our results further suggest the role of osteopontin in acute MS relapses showing that, in proximity to relapses, osteopontin expression in CSF may be increased along with other proinflammatory mediators and correlated with decreased concentrations of anti-inflammatory molecules.

18.
Mult Scler Relat Disord ; 71: 104528, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36709576

RESUMEN

Neurodegenerative and inflammatory processes influence the clinical course of multiple sclerosis (MS). The ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) has been associated with cognitive dysfunction, amyloid deposition and neuroinflammation in Alzheimer's disease. We explored in a group of 50 patients with relapsing-remitting MS the association between the cerebrospinal fluid (CSF) levels of BACE1, clinical characteristics at the time of diagnosis and prospective disability after three-years follow-up. In addition, we assessed the correlations between the CSF levels of BACE 1, amyloid ß (Aß) 1-40 and 1-42, phosphorylated tau (pTau), lactate, and a set of inflammatory and anti-inflammatory molecules. BACE1 CSF levels were correlated positively with depression as measured with Beck Depression Inventory-Second Edition scale, and negatively with visuospatial memory performance evaluated by the Brief Visuospatial Memory Test-Revised. In addition, BACE CSF levels were positively correlated with Bayesian Risk Estimate for MS at onset, and with Expanded Disability Status Scale score assessed three years after diagnosis. Furthermore, a positive correlation was found between BACE1, amyloid ß 42/40 ratio (Spearman's r = 0.334, p = 0.018, n = 50), pTau (Spearman's r = 0.304, p = 0.032, n = 50) and lactate concentrations (Spearman's r = 0.361, p = 0.01, n = 50). Finally, an association emerged between BACE1 CSF levels and a group of pro and anti-inflammatory molecules, including interleukin (IL)-4, IL-17, IL-13, IL-9 and interferon-γ. BACE1 may have a role in different key mechanisms such as neurodegeneration, oxidative stress and inflammation, influencing mood, cognitive disorders and disability progression in MS.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/complicaciones , Secretasas de la Proteína Precursora del Amiloide , Teorema de Bayes , Estudios Prospectivos , Ácido Aspártico Endopeptidasas , Inflamación
19.
Curr Neuropharmacol ; 21(12): 2567-2582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021418

RESUMEN

BACKGROUND: TNF-dependent synaptotoxicity contributes to the neuronal damage occurring in patients with Multiple Sclerosis (pwMS) and its mouse model Experimental Autoimmune Encephalomyelitis (EAE). Here, we investigated miR-142-3p, a synaptotoxic microRNA induced by inflammation in EAE and MS, as a potential downstream effector of TNF signalling. METHODS: Electrophysiological recordings, supported by molecular, biochemical and histochemical analyses, were performed to explore TNF-synaptotoxicity in the striatum of EAE and healthy mice. MiR-142 heterozygous (miR-142 HE) mice and/or LNA-anti miR-142-3p strategy were used to verify the TNF-miR-142-3p axis hypothesis. The cerebrospinal fluid (CSF) of 151 pwMS was analysed to evaluate possible correlation between TNF and miR-142-3p levels and their impact on clinical parameters (e.g. progression index (PI), age-related clinical severity (gARMSS)) and MRI measurements at diagnosis (T0). RESULTS: High levels of TNF and miR-142-3p were detected in both EAE striatum and MS-CSF. The TNF-dependent glutamatergic alterations were prevented in the inflamed striatum of EAE miR-142 HE mice. Accordingly, TNF was ineffective in healthy striatal slices incubated with LNA-anti miR- 142-3p. However, both preclinical and clinical data did not validate the TNF-miR-142-3p axis hypothesis, suggesting a permissive neuronal role of miR-142-3p on TNF-signalling. Clinical data showed a negative impact of each molecule on disease course and/or brain lesions and unveiled that their high levels exert a detrimental synergistic effect on disease activity, PI and white matter lesion volume. CONCLUSION: We propose miR-142-3p as a critical modulator of TNF-mediated neuronal toxicity and suggest a detrimental synergistic action of these molecules on MS pathology.


Asunto(s)
Encefalomielitis Autoinmune Experimental , MicroARNs , Esclerosis Múltiple , Animales , Humanos , Ratones , Antagomirs , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Inflamación , MicroARNs/genética
20.
Biomolecules ; 12(2)2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35204724

RESUMEN

Background: Astrocytes and microglia play an important role in the inflammatory process of multiple sclerosis (MS). We investigated the associations between the cerebrospinal fluid (CSF) levels of glial fibrillary acid protein (GFAP) and soluble triggering receptors expressed on myeloid cells-2 (sTREM-2), inflammatory molecules, and clinical characteristics in a group of patients with relapsing-remitting MS (RRMS). Methods: Fifty-one RRMS patients participated in the study. Clinical evaluation and CSF collection were performed at the time of diagnosis. The CSF levels of GFAP, sTREM-2, and of a large set of inflammatory and anti-inflammatory molecules were determined. MRI structural measures (cortical thickness, T2 lesion load, cerebellar volume) were examined. Results: The CSF levels of GFAP and sTREM-2 showed significant correlations with inflammatory cytokines IL-8, G-CSF, and IL-5. Both GFAP and sTREM-2 CSF levels positively correlated with age at diagnosis. GFAP was also higher in male MS patients, and was associated with an increased risk of MS progression, as evidenced by higher BREMS at the onset. Finally, a negative association was found between GFAP CSF levels and cerebellar volume in RRMS at diagnosis. Conclusions: GFAP and sTREM-2 represent suitable biomarkers of central inflammation in MS. Our results suggest that enhanced CSF expression of GFAP may characterize patients with a higher risk of progression.


Asunto(s)
Proteína Ácida Fibrilar de la Glía , Glicoproteínas de Membrana , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Receptores Inmunológicos , Biomarcadores/líquido cefalorraquídeo , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo , Humanos , Masculino , Glicoproteínas de Membrana/líquido cefalorraquídeo , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Enfermedades Neuroinflamatorias/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA