Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cancer Immunol Immunother ; 71(10): 2405-2420, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35217892

RESUMEN

Human gut microbial species found to associate with clinical responses to immune checkpoint inhibitors (ICIs) are often tested in mice using fecal microbiota transfer (FMT), wherein tumor responses in recipient mice may recapitulate human responses to ICI treatment. However, many FMT studies have reported only limited methodological description, details of murine cohorts, and statistical methods. To investigate the reproducibility and robustness of gut microbial species that impact ICI responses, we performed human to germ-free mouse FMT using fecal samples from patients with non-small cell lung cancer who had a pathological response or nonresponse after neoadjuvant ICI treatment. R-FMT mice yielded greater anti-tumor responses in combination with anti-PD-L1 treatment compared to NR-FMT, although the magnitude varied depending on mouse cell line, sex, and individual experiment. Detailed investigation of post-FMT mouse microbiota using 16S rRNA amplicon sequencing, with models to classify and correct for biological variables, revealed a shared presence of the most highly abundant taxa between the human inocula and mice, though low abundance human taxa colonized mice more variably after FMT. Multiple Clostridium species also correlated with tumor outcome in individual anti-PD-L1-treated R-FMT mice. RNAseq analysis revealed differential expression of T and NK cell-related pathways in responding tumors, irrespective of FMT source, with enrichment of these cell types confirmed by immunohistochemistry. This study identifies several human gut microbial species that may play a role in clinical responses to ICIs and suggests attention to biological variables is needed to improve reproducibility and limit variability across experimental murine cohorts.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Trasplante de Microbiota Fecal , Humanos , Ratones , Terapia Neoadyuvante , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados
2.
Semin Immunol ; 32: 25-34, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28822617

RESUMEN

The human microbiota is a complex ecosystem of diverse microorganisms consisting of bacteria, viruses, and fungi residing predominantly in epidermal and mucosal habitats across the body, such as skin, oral cavity, lung, intestine and vagina. These symbiotic communities in health, or dysbiotic communities in disease, display tremendous interaction with the local environment and systemic responses, playing a critical role in the host's nutrition, immunity, metabolism and diseases including cancers. While the profiling of normal microbiota in healthy populations is useful and necessary, more recent studies have focused on the microbiota associated with disease, particularly cancers. In this paper, we review current evidence on the role of the human microbiota in four cancer types (colorectal cancer, head and neck cancer, pancreatic cancer, and lung cancer) proposed as affected by both the oral and gut microbiota, and provide a perspective on current gaps in the knowledge of the microbiota and cancer.


Asunto(s)
Disbiosis/inmunología , Intestinos/inmunología , Microbiota/inmunología , Boca/inmunología , Membrana Mucosa/fisiología , Neoplasias/inmunología , Animales , Disbiosis/complicaciones , Disbiosis/microbiología , Humanos , Intestinos/microbiología , Boca/microbiología , Neoplasias/complicaciones , Neoplasias/microbiología , Simbiosis
3.
Am J Physiol Cell Physiol ; 311(5): C777-C792, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27558159

RESUMEN

Bile acids are known to initiate intricate signaling events in a variety of tissues, primarily in the liver and gastrointestinal tract. Of the known bile acids, only the 7α-dihydroxy species, deoxycholic acid and chenodeoxycholic acid (CDCA), and their conjugates, activate processes that stimulate epithelial Cl- secretion. We have previously published that CDCA acts in a rapid manner to stimulate colonic ion secretion via protein kinase A (PKA)-mediated activation of the dominant Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) (Ao M, Sarathy J, Domingue J, Alrefai WA, and Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013); however, PKA signaling did not account for the entire CDCA response. Here we show that in human colonic T84 cells, CDCA's induction of CFTR activity, measured as changes in short-circuit current (Isc), is dependent on epidermal growth factor receptor (EGFR) activation and does not involve the bile acid receptors TGR5 or farnesoid X receptor. CDCA activation of Cl- secretion does not require Src, mitogen-activated protein kinases, or phosphoinositide 3-kinase downstream of EGFR but does require an increase in cytosolic Ca2+ In addition to PKA signaling, we found that the CDCA response requires the novel involvement of the exchange protein directly activated by cAMP (EPAC). EPAC is a known hub for cAMP and Ca2+ cross talk. Downstream of EPAC, CDCA activates Rap2, and changes in free cytosolic Ca2+ were dependent on both EPAC and EGFR activation. This study establishes the complexity of CDCA signaling in the colonic epithelium and shows the contribution of EGFR, EPAC, and Ca2+ in CDCA-induced activation of CFTR-dependent Cl- secretion.


Asunto(s)
Calcio/metabolismo , Ácido Quenodesoxicólico/metabolismo , Cloruros/metabolismo , Colon/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Receptores ErbB/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología
4.
Am J Physiol Cell Physiol ; 310(11): C1010-23, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27076617

RESUMEN

Bile acids (BAs) play a complex role in colonic fluid secretion. We showed that dihydroxy BAs, but not the monohydroxy BA lithocholic acid (LCA), stimulate Cl(-) secretion in human colonic T84 cells (Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013). In this study, we explored the effect of LCA on the action of other secretagogues in T84 cells. While LCA (50 µM, 15 min) drastically (>90%) inhibited FSK-stimulated short-circuit current (Isc), it did not alter carbachol-stimulated Isc LCA did not alter basal Isc, transepithelial resistance, cell viability, or cytotoxicity. LCA's inhibitory effect was dose dependent, acted faster from the apical membrane, rapid, and not immediately reversible. LCA also prevented the Isc stimulated by the cAMP-dependent secretagogues 8-bromo-cAMP, lubiprostone, or chenodeoxycholic acid (CDCA). The LCA inhibitory effect was BA specific, since CDCA, cholic acid, or taurodeoxycholic acid did not alter FSK or carbachol action. While LCA alone had no effect on intracellular cAMP concentration ([cAMP]i), it decreased FSK-stimulated [cAMP]i by 90%. Although LCA caused a small increase in intracellular Ca(2+) concentration ([Ca(2+)]i), chelation by BAPTA-AM did not reverse LCA's effect on Isc LCA action does not appear to involve known BA receptors, farnesoid X receptor, vitamin D receptor, muscarinic acetylcholine receptor M3, or bile acid-specific transmembrane G protein-coupled receptor 5. LCA significantly increased ERK1/2 phosphorylation, which was completely abolished by the MEK inhibitor PD-98059. Surprisingly PD-98059 did not reverse LCA's effect on Isc Finally, although LCA had no effect on basal Isc, nystatin permeabilization studies showed that LCA both stimulates an apical cystic fibrosis transmembrane conductance regulator Cl(-) current and inhibits a basolateral K(+) current. In summary, 50 µM LCA greatly inhibits cAMP-stimulated Cl(-) secretion, making low doses of LCA of potential therapeutic interest for diarrheal diseases.


Asunto(s)
Antidiarreicos/farmacología , Cloruros/metabolismo , Colon/efectos de los fármacos , AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/agonistas , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Secreciones Intestinales/efectos de los fármacos , Ácido Litocólico/farmacología , Línea Celular , Colon/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Secreciones Intestinales/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
5.
Gut Microbes ; 16(1): 2353394, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743047

RESUMEN

Exposing C-section infants to the maternal vaginal microbiome, coined "vaginal seeding", partially restores microbial colonization. However, whether vaginal seeding decreases metabolic disease risk is unknown. Therefore, we assessed the effect of vaginal seeding of human infants on adiposity in a murine model. Germ-free mice were colonized with transitional stool from human infants who received vaginal seeding or control (placebo) seeding in a double-blind randomized trial. There was a reduction in intraabdominal adipose tissue (IAAT) volume in male mice that received stool from vaginally seeded infants compared to control infants. Higher levels of isoleucine and lower levels of nucleic acid metabolites were observed in controls and correlated with increased IAAT. This suggests that early changes in the gut microbiome and metabolome caused by vaginal seeding have a positive impact on metabolic health.


Asunto(s)
Adiposidad , Trasplante de Microbiota Fecal , Heces , Microbioma Gastrointestinal , Vagina , Animales , Humanos , Femenino , Ratones , Masculino , Vagina/microbiología , Heces/microbiología , Heces/química , Método Doble Ciego , Grasa Intraabdominal/metabolismo , Lactante , Recién Nacido
6.
Am J Physiol Cell Physiol ; 305(4): C447-56, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23761628

RESUMEN

High levels of chenodeoxycholic acid (CDCA) and deoxycholic acid stimulate Cl(-) secretion in mammalian colonic epithelia. While different second messengers have been implicated in this action, the specific signaling pathway has not been fully delineated. Using human colon carcinoma T84 cells, we elucidated this cascade assessing Cl(-) transport by measuring I(-) efflux and short-circuit current (Isc). CDCA (500 µM) rapidly increases I(-) efflux, and we confirmed by Isc that it elicits a larger response when added to the basolateral vs. apical surface. However, preincubation with cytokines increases the monolayer responsiveness to apical addition by 55%. Nystatin permeabilization studies demonstrate that CDCA stimulates an eletrogenic apical Cl(-) but not a basolateral K(+) current. Furthermore, CDCA-induced Isc was inhibited (≥67%) by bumetanide, BaCl2, and the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh-172. CDCA-stimulated Isc was decreased 43% by the adenylate cyclase inhibitor MDL12330A and CDCA increases intracellular cAMP concentration. The protein kinase A inhibitor H89 and the microtubule disrupting agent nocodazole, respectively, cause 94 and 47% reductions in CDCA-stimulated Isc. Immunoprecipitation with CFTR antibodies, followed by sequential immunoblotting with Pan-phospho and CFTR antibodies, shows that CDCA increases CFTR phosphorylation by approximately twofold. The rapidity and side specificity of the response to CDCA imply a membrane-mediated process. While CDCA effects are not blocked by the muscarinic receptor antagonist atropine, T84 cells possess transcript and protein for the bile acid G protein-coupled receptor TGR5. These results demonstrate for the first time that CDCA activates CFTR via a cAMP-PKA pathway involving microtubules and imply that this occurs via a basolateral membrane receptor.


Asunto(s)
Membrana Celular/metabolismo , Ácido Quenodesoxicólico/metabolismo , Cloruros/metabolismo , Neoplasias del Colon/metabolismo , AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Intestinal/metabolismo , Sistemas de Mensajero Secundario , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/inmunología , Permeabilidad de la Membrana Celular , Polaridad Celular , Neoplasias del Colon/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Potenciales de la Membrana , Microtúbulos/metabolismo , Fosforilación , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de Tiempo , Regulación hacia Arriba
7.
Cancer Discov ; 12(8): 1873-1885, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35678528

RESUMEN

Defining the complex role of the microbiome in colorectal cancer and the discovery of novel, protumorigenic microbes are areas of active investigation. In the present study, culturing and reassociation experiments revealed that toxigenic strains of Clostridioides difficile drove the tumorigenic phenotype of a subset of colorectal cancer patient-derived mucosal slurries in germ-free ApcMin/+ mice. Tumorigenesis was dependent on the C. difficile toxin TcdB and was associated with induction of Wnt signaling, reactive oxygen species, and protumorigenic mucosal immune responses marked by the infiltration of activated myeloid cells and IL17-producing lymphoid and innate lymphoid cell subsets. These findings suggest that chronic colonization with toxigenic C. difficile is a potential driver of colorectal cancer in patients. SIGNIFICANCE: Colorectal cancer is a leading cause of cancer and cancer-related deaths worldwide, with a multifactorial etiology that likely includes procarcinogenic bacteria. Using human colon cancer specimens, culturing, and murine models, we demonstrate that chronic infection with the enteric pathogen C. difficile is a previously unrecognized contributor to colonic tumorigenesis. See related commentary by Jain and Dudeja, p. 1838. This article is highlighted in the In This Issue feature, p. 1825.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Neoplasias del Colon , Neoplasias Colorrectales , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Carcinogénesis , Clostridioides , Humanos , Inmunidad Innata , Linfocitos/metabolismo , Ratones
8.
mBio ; 13(1): e0299121, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35130731

RESUMEN

Fusobacteria are commonly associated with human colorectal cancer (CRC), but investigations are hampered by the absence of a stably colonized murine model. Further, Fusobacterium nucleatum subspecies isolated from human CRC have not been investigated. While F. nucleatum subspecies are commonly associated with CRC, their ability to induce tumorigenesis and contributions to human CRC pathogenesis are uncertain. We sought to establish a stably colonized murine model and to understand the inflammatory potential and virulence genes of human CRC F. nucleatum, representing the 4 subspecies, animalis, nucleatum, polymorphum, and vincentii. Five human CRC-derived and two non-CRC derived F. nucleatum strains were tested for colonization, tumorigenesis, and cytokine induction in specific-pathogen-free (SPF) and/or germfree (GF) wild-type and ApcMin/+ mice, as well as in vitro assays and whole-genome sequencing (WGS). SPF wild-type and ApcMin/+ mice did not achieve stable colonization with F. nucleatum, whereas certain subspecies stably colonized some GF mice but without inducing colon tumorigenesis. F. nucleatum subspecies did not form in vivo biofilms or associate with the mucosa in mice. In vivo inflammation was inconsistent across subspecies, whereas F. nucleatum induced greater cytokine responses in a human colorectal cell line, HCT116. While F. nucleatum subspecies displayed genomic variability, no distinct virulence genes associated with human CRC strains were identified that could reliably distinguish these strains from non-CRC clinical isolates. We hypothesize that the lack of F. nucleatum-induced tumorigenesis in our model reflects differences in human and murine biology and/or a synergistic role for F. nucleatum in concert with other bacteria to promote carcinogenesis. IMPORTANCE Colon cancer is a leading cause of cancer morbidity and mortality, and it is hypothesized that dysbiosis in the gut microbiota contributes to colon tumorigenesis. Fusobacterium nucleatum, a member of the oropharyngeal microbiome, is enriched in a subset of human colon tumors. However, it is unclear whether this genetically varied species directly promotes tumor formation, modulates mucosal immune responses, or merely colonizes the tumor microenvironment. Mechanistic studies to address these questions have been stymied by the lack of an animal model that does not rely on daily orogastric gavage. Using multiple murine models, in vitro assays with a human colon cancer cell line, and whole-genome sequencing analysis, we investigated the proinflammatory and tumorigenic potential of several F. nucleatum clinical isolates. The significance of this research is development of a stable colonization model of F. nucleatum that does not require daily oral gavages in which we demonstrate that a diverse library of clinical isolates do not promote tumorigenesis.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Animales , Humanos , Ratones , Carcinogénesis , Citocinas , Modelos Animales de Enfermedad , Fusobacterium nucleatum/genética , Inflamación/complicaciones , Microambiente Tumoral
10.
Mucosal Immunol ; 13(3): 413-422, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32112046

RESUMEN

The impact of the human microbiome on health and disease is of utmost importance and has been studied intensively in recent years. Microbes promote immune system development and are essential to the production and absorption of nutrients for the host but are also implicated in disease pathogenesis. Particularly, bacterial biofilms have long been recognized as contributors to chronic infections and diseases in humans. However, our understanding of how the host responds to the presence of biofilms, specifically the immune response to biofilms, and how this contributes to disease pathogenesis is limited. This review aims to highlight what is known about biofilm formation and in vivo models available for the biofilm study. We critique the contribution of biofilms to human diseases, focusing on the lung diseases, cystic fibrosis and chronic obstructive pulmonary disease, and the gut diseases, inflammatory bowel disease and colorectal cancer.


Asunto(s)
Biopelículas , Microbioma Gastrointestinal/inmunología , Interacciones Huésped-Patógeno/inmunología , Microbiota/inmunología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/microbiología , Animales , Biopelículas/crecimiento & desarrollo , Susceptibilidad a Enfermedades , Humanos , Inmunidad Mucosa , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Modelos Biológicos
12.
Clin Cancer Res ; 25(17): 5250-5259, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31061070

RESUMEN

PURPOSE: Approximately 10% of patients with mismatch repair-proficient (MMRp) colorectal cancer showed clinical benefit to anti-PD-1 monotherapy (NCT01876511). We sought to identify biomarkers that delineate patients with immunoreactive colorectal cancer and to explore new combinatorial immunotherapy strategies that can impact MMRp colorectal cancer. EXPERIMENTAL DESIGN: We compared the expression of 44 selected immune-related genes in the primary colon tumor of 19 patients with metastatic colorectal cancer (mCRC) who responded (n = 13) versus those who did not (n = 6) to anti-PD-1 therapy (NCT01876511). We define a 10 gene-based immune signature that could distinguish responder from nonresponder. Resected colon specimens (n = 14) were used to validate the association of the predicted status (responder and nonresponder) with the immune-related gene expression, the phenotype, and the function of tumor-infiltrating lymphocytes freshly isolated from the same tumors. RESULTS: Although both IL17Low and IL17High immunoreactive MMRp colorectal cancers are associated with intratumor correlates of adaptive immunosuppression (CD8/IFNγ and PD-L1/IDO1 colocalization), only IL17Low MMRp tumors (3/14) have a tumor immune microenvironment (TiME) that resembles the TiME in primary colon tumors of patients with mCRC responsive to anti-PD-1 treatment. CONCLUSIONS: The detection of a preexisting antitumor immune response in MMRp colorectal cancer (immunoreactive MMRp colorectal cancer) is not sufficient to predict a clinical benefit to T-cell checkpoint inhibitors. Intratumoral IL17-mediated signaling may preclude responses to immunotherapy. Drugs targeting the IL17 signaling pathway are available in clinic, and their combination with T-cell checkpoint inhibitors could improve colorectal cancer immunotherapy.See related commentary by Willis et al., p. 5185.


Asunto(s)
Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Microambiente Tumoral
13.
Physiol Rep ; 2(9)2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25263207

RESUMEN

The Human Embryonic Kidney 293 cell line (HEK-293) readily lends itself to genetic manipulation and is a common tool for biologists to overexpress proteins of interest and study their function and molecular regulation. Although these cells have some limitations, such as an inability to form resistive monolayers necessary for studying transepithelial ion transport, they are nevertheless valuable in studying individual epithelial ion transporters. We report the use of HEK-293 cells to study the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. While HEK-293 cells endogenously express mRNA for the Cl(-) channels, ClC-2 and TMEM16A, they neither express CFTR mRNA nor protein. Therefore, we stably transfected HEK-293 cells with EGFP-CFTR (HEK-CFTR) and demonstrated CFTR function by measuring forskolin-stimulated iodide efflux. This efflux was inhibited by CFTRinh172, and the protein kinase A inhibitor H89, but not by Ca(2+) chelation. In contrast to intestinal epithelia, forskolin stimulation does not increase surface CFTR expression and does not require intact microtubules in HEK-CFTR. To investigate the role of an endogenous GαS-coupled receptor, we examined the bile acid receptor, TGR5. Although HEK-CFTR cells express TGR5, the potent TGR5 agonist lithocholic acid (LCA; 5-500 µmol/L) did not activate CFTR. Furthermore, forskolin, but not LCA, increased [cAMP]i in HEK-CFTR suggesting that endogenous TGR5 may not be functionally linked to GαS. However, LCA did increase [Ca(2+)]i and interestingly, abolished forskolin-stimulated iodide efflux. Thus, we propose that the stable HEK-CFTR cell line is a useful model to study the multiple signaling pathways that regulate CFTR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA