Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Bone Miner Metab ; 41(1): 41-51, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36385193

RESUMEN

INTRODUCTION: This study sought to examine the effect of vitamin D3 (VD3) 3200 IU/d, calcifediol (HyD) 20mcg/d, or placebo on intramyonuclear vitamin D receptor (VDR) concentration, muscle fiber cross-sectional area (FCSA), and muscle satellite cell activation. MATERIALS AND METHODS: It was conducted on a subset of the VD3 (n = 12), HyD (n = 11), and placebo (n = 13) groups who participated in the 6-month randomized controlled HyD Osteopenia Study in postmenopausal women. Baseline and 6-month vastus lateralis muscle cross sections were probed for VDR, fiber type I and II, and PAX7 (satellite cell marker) using immunofluorescence. RESULTS: Baseline mean ± SD age was 61 ± 4 years and serum 25-hydroxyvitamin D (25OHD) level was 55.1 ± 22.8 nmol/L. Baseline characteristics did not differ significantly by group. Six-month mean ± SD 25OHD levels were 138.7 ± 22.2 nmol/L (VD3), 206.8 ± 68.8 nmol/L (HyD), and 82.7 ± 36.1 nmol/L (placebo), ANOVA P < 0.001. There were no significant group differences in 6-month change in VDR concentration (ANOVA P = 0.227). Mean ± SD percent 6-month changes in type I FCSA were 20.5 ± 32.7% (VD3), - 6.6 ± 20.4% (HyD), and - 0.3 ± 14.0% (placebo, ANOVA P = 0.022). Type II FCSA or PAX7 concentration did not change significantly by group (all P > 0.358). CONCLUSION: This study demonstrated no significant change in intramyonuclear VDR in response to either form of vitamin D vs. placebo. Type I FCSA significantly increased with VD3, but not with HyD at 6 months. As type I fibers are more fatigue resistant than type II, enlargement in type I suggests potential for improved muscle endurance. Although HyD resulted in the highest 25OHD levels, no skeletal muscle benefits were noted at these high levels. CLINICAL TRIAL: NCT02527668.


Asunto(s)
Calcifediol , Colecalciferol , Femenino , Humanos , Persona de Mediana Edad , Anciano , Receptores de Calcitriol/metabolismo , Vitamina D/farmacología , Músculo Esquelético/metabolismo , Suplementos Dietéticos , Método Doble Ciego
2.
Brain ; 145(3): 1038-1051, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35362022

RESUMEN

Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson's disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent Parkinson's disease risk factor. They are associated with loss of activity of a key enzyme involved in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal α-synuclein-lipid interactions and the development of Parkinson pathology. In this study, the lipid membrane composition of fibroblasts isolated from control subjects, patients with idiopathic Parkinson's disease and Parkinson's disease patients carrying the L444P GBA mutation (PD-GBA) was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed significantly from that of control and idiopathic Parkinson's disease cells. It was characterized by an overall increase in sphingolipid levels. It also featured a significant increase in the proportion of ceramide, sphingomyelin and hexosylceramide molecules with shorter chain length and a decrease in the percentage of longer-chain sphingolipids. The extent of this shift was correlated to the degree of reduction of fibroblast glucocerebrosidase activity. Lipid extracts from control and PD-GBA fibroblasts were added to recombinant α-synuclein solutions. The kinetics of α-synuclein aggregation were significantly accelerated after addition of PD-GBA extracts as compared to control samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-synuclein-lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched by shorter-chain sphingolipids. In a final set of experiments, control and PD-GBA fibroblasts were incubated in the presence of the small molecule chaperone ambroxol. This treatment restored glucocerebrosidase activity and sphingolipid levels and composition of PD-GBA cells. It also reversed the pro-aggregation effect that lipid extracts from PD-GBA fibroblasts had on α-synuclein. Taken together, the findings of this study indicate that the L444P GBA mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered lipid profile could also be an indicator of increased risk for α-synuclein aggregate pathology.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Fibroblastos/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Humanos , Mutación/genética , Enfermedad de Parkinson/metabolismo , Esfingolípidos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Bull Entomol Res ; 113(6): 808-813, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37855130

RESUMEN

Mutualism between ants and honeydew-producing hemipterans is a highly successful evolutionary innovation that attains the status of ecological keystone across many terrestrial ecosystems, involving a multitude of actors through direct or cascading effects. In these relationships, ants often protect their hemipteran partners against their arthropod natural enemies, sometimes interfering with the biological control of pest species. However, the dynamics of these interactions are highly variable based on the specific identity of all the actors involved, and baseline data remain scarce. We performed a field experiment exposing colonies of the walnut aphid Panaphis juglandis attended by five European ant species (Camponotus piceus, Ca. vagus, Crematogaster scutellaris, Dolichoderus quadripunctatus, Lasius emarginatus) to a native and an exotic lady beetle (Adalia bipunctata and Harmonia axyridis), documenting the behavioural interactions between these insects and the performance of ants in the protection of the aphids. Our results reveal a significant behavioural diversity among the ant species involved, with D. quadripunctatus and L. emarginatus being the most aggressive and having the best performance as aphid defenders, and Ca. piceus being least effective and often fleeing away. Cr. scutellaris displayed a rare rescue behaviour attempting to pull away the aphids that the lady beetles grabbed. On the other hand, behavioural responses to A. bipunctata and H. axyridis were similar. Further investigations are needed to understand the eco-ethological implications of these differences, while a better understanding of ant behavioural diversity may help refine biological control strategies.


Asunto(s)
Hormigas , Áfidos , Escarabajos , Juglans , Humanos , Animales , Áfidos/fisiología , Ecosistema , Simbiosis , Hormigas/fisiología , Escarabajos/fisiología
4.
BMC Genomics ; 23(1): 371, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578183

RESUMEN

BACKGROUND: Cucurbita pepo is highly susceptible to Zucchini yellow mosaic virus (ZYMV) and the resistance found in several wild species cannot be considered as complete or broad-spectrum resistance. In this study, a source of tolerance introgressed in C. pepo (381e) from C. moschata, in True French (TF) background, was investigated 12 days post-inoculation (DPI) at transcriptomic and genomic levels. RESULTS: The comparative RNA-sequencing (RNA-Seq) of TF (susceptible to ZYMV) and 381e (tolerant to ZYMV) allowed the evaluation of about 33,000 expressed transcripts and the identification of 146 differentially expressed genes (DEGs) in 381e, mainly involved in photosynthesis, transcription, cytoskeleton organization and callose synthesis. By contrast, the susceptible cultivar TF triggered oxidative processes related to response to biotic stimulus and activated key regulators of plant virus intercellular movement. In addition, the discovery of variants located in transcripts allowed the identification of two chromosome regions rich in Single Nucleotide Polymorphisms (SNPs), putatively introgressed from C. moschata, containing genes exclusively expressed in 381e. CONCLUSION: 381e transcriptome analysis confirmed a global improvement of plant fitness by reducing the virus titer and movement. Furthermore, genes implicated in ZYMV tolerance in C. moschata introgressed regions were detected. Our work provides new insight into the plant virus recovery process and a better understanding of the molecular basis of 381e tolerance.


Asunto(s)
Cucurbita , Virus de Plantas , Potyvirus , Cucurbita/genética , Genómica , Enfermedades de las Plantas/genética , Virus de Plantas/genética , Potyvirus/genética , Transcriptoma
5.
Am J Physiol Endocrinol Metab ; 323(5): E435-E447, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36044708

RESUMEN

Posttranscriptional regulation by microRNA (miRNA) facilitates exercise and diet-induced skeletal muscle adaptations. However, the impact of diet on miRNA expression during postexercise recovery remains unclear. The objective of this study was to examine the effects of consuming carbohydrate or a nutrient-free control on skeletal muscle miRNA expression during 3 h of recovery from aerobic exercise. Using a randomized, crossover design, seven men (means ± SD, age: 21 ± 3 yr; body mass: 83 ± 13 kg; V̇o2peak: 43 ± 2 mL/kg/min) completed two-cycle ergometry glycogen depletion trials followed by 3 h of recovery while consuming either carbohydrate (CHO: 1 g/kg/h) or control (CON: nutrient free). Muscle biopsy samples were obtained under resting fasted conditions at baseline and at the end of the 3-h recovery (REC) period. miRNA expression was determined using unbiased RT-qPCR microarray analysis. Trials were separated by 7 days. Twenty-five miRNAs were different (P < 0.05) between CHO and CON at REC, with Let7i-5p and miR-195-5p being the most predictive of treatment. In vitro overexpression of Let7i-5p and miR-195-p5 in C2C12 skeletal muscle cells decreased (P < 0.05) the expression of protein breakdown (Foxo1, Trim63, Casp3, and Atf4) genes, ubiquitylation, and protease enzyme activity compared with control. Energy sensing (Prkaa1 and Prkab1) and glycolysis (Gsy1 and Gsk3b) genes were lower (P < 0.05) with Let7i-5p overexpression compared with miR-195-5p and control. Fat metabolism (Cpt1a, Scd1, and Hadha) genes were lower (P < 0.05) in miR-195-5p than in control. These data indicate that consuming CHO after aerobic exercise alters miRNA profiles compared with CON, and these differences may govern mechanisms facilitating muscle recovery.NEW & NOTEWORTHY Results provide novel insight into effects of carbohydrate intake on the expression of skeletal muscle microRNA during early recovery from aerobic exercise and reveal that Let7i-5p and miR-195-5p are important regulators of skeletal muscle protein breakdown to aid in facilitating muscle recovery.


Asunto(s)
Glucógeno , MicroARNs , Adolescente , Adulto , Humanos , Masculino , Adulto Joven , Carbohidratos de la Dieta/farmacología , Carbohidratos de la Dieta/metabolismo , Ejercicio Físico/fisiología , Glucógeno/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/metabolismo
6.
Mol Ecol ; 31(19): 4991-5004, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35920076

RESUMEN

The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste exhibits highly specialized morphology, behaviour, and life-history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making ants. Here, we investigate whether gene expression varies in parallel ways between lifestyles (slave-making versus host ants) across five independent origins of ant slavery in the "Formicoxenus-group" of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than in nonparasitic ants, we also compare caste-specific gene expression patterns between lifestyles. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated modules of coexpressed genes with strong connectivity. However, several genes and one gene module are linked to slave-making across the independent origins of this parasitic lifestyle, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences in gene expression remain consistent even when species switch to a parasitic lifestyle. Our findings strongly support the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, as proposed by the "genetic toolkit" hypothesis.


Asunto(s)
Hormigas , Rasgos de la Historia de Vida , Animales , Hormigas/genética , Abejas/genética , Conducta Animal , Evolución Biológica , Transcriptoma/genética
7.
Am J Physiol Cell Physiol ; 321(6): C977-C991, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34705586

RESUMEN

Understanding paradoxical responses to anabolic stimulation and identifying the mechanisms for this inconsistency in mobility-limited older adults may provide new targets for the treatment of sarcopenia. Our laboratory has discovered that dysregulation in microRNA (miRNA) that target anabolic pathways is a potential mechanism resulting in age-associated decreases in skeletal muscle mass and function (sarcopenia). The objective of the current study was to assess circulating miRNA expression profiles in diametric response of leg lean mass in mobility-limited older individuals after a 6-mo progressive resistance exercise training intervention (PRET) and determine the influence of differentially expressing miRNA on regulation of skeletal muscle mass. Participants were dichotomized by gain (Gainers; mean +561.4 g, n = 33) or loss (Losers; mean -589.8 g, n = 40) of leg lean mass after PRET. Gainers significantly increased fat-free mass 2.4% vs. -0.4% for Losers. Six miRNA (miR-1-3p, miR-19b-3p, miR-92a, miR-126, miR-133a-3p, and miR-133b) were significantly identified to be differentially expressed between Gainers and Losers, with miR-19b-3p being the miRNA most highly associated with increases in fat-free mass. Using an aging mouse model, we then assessed if miR-19b-3p expression was different in young mice with larger muscle mass compared with older mice. Circulating and skeletal muscle miR-19b-3p expression was higher in young compared with old mice and was positively associated with muscle mass and grip strength. We then used a novel integrative approach to determine if differences in circulating miR-19b-3p potentially translate to augmented anabolic response in human skeletal muscle cells in vitro. Results from this analysis identified that overexpression of miR-19b-3p targeted and downregulated PTEN by 64% to facilitate significant ∼50% increase in muscle protein synthetic rate as measured with SUnSET. The combine results of these three models identify miR-19b-3p as a potent regulator of muscle anabolism that may contribute to an inter-individual response to PRET in mobility-limited older adults.


Asunto(s)
MicroARNs/biosíntesis , Músculo Esquelético/metabolismo , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Entrenamiento de Fuerza/métodos , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Método Doble Ciego , Femenino , Fuerza de la Mano , Humanos , Masculino , Metabolismo , Ratones , Ratones Endogámicos C57BL , Células Musculares/metabolismo , Condicionamiento Físico Animal
8.
J Neuroinflammation ; 18(1): 220, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551802

RESUMEN

BACKGROUND: Homozygotic mutations in the GBA gene cause Gaucher's disease; moreover, both patients and heterozygotic carriers have been associated with 20- to 30-fold increased risk of developing Parkinson's disease. In homozygosis, these mutations impair the activity of ß-glucocerebrosidase, the enzyme encoded by GBA, and generate a lysosomal disorder in macrophages, which changes morphology towards an engorged phenotype, considered the hallmark of Gaucher's disease. Notwithstanding the key role of macrophages in this disease, most of the effects in the brain have been attributed to the ß-glucocerebrosidase deficit in neurons, while a microglial phenotype for these mutations has never been reported. METHODS: We applied the bioluminescence imaging technology, immunohistochemistry and gene expression analysis to investigate the consequences of microglial ß-glucocerebrosidase inhibition in the brain of reporter mice, in primary neuron/microglia cocultures and in cell lines. The use of primary cells from reporter mice allowed for the first time, to discriminate in cocultures neuronal from microglial responses consequent to the ß-glucocerebrosidase inhibition; results were finally confirmed by pharmacological depletion of microglia from the brain of mice. RESULTS: Our data demonstrate the existence of a novel neuroprotective mechanism mediated by a direct microglia-to-neuron contact supported by functional actin structures. This cellular contact stimulates the nuclear factor erythroid 2-related factor 2 activity in neurons, a key signal involved in drug detoxification, redox balance, metabolism, autophagy, lysosomal biogenesis, mitochondrial dysfunctions, and neuroinflammation. The central role played by microglia in this neuronal response in vivo was proven by depletion of the lineage in the brain of reporter mice. Pharmacological inhibition of microglial ß-glucocerebrosidase was proven to induce morphological changes, to turn on an anti-inflammatory/repairing pathway, and to hinder the microglia ability to activate the nuclear factor erythroid 2-related factor 2 response, thus increasing the neuronal susceptibility to neurotoxins. CONCLUSION: This mechanism provides a possible explanation for the increased risk of neurodegeneration observed in carriers of GBA mutations and suggest novel therapeutic strategies designed to revert the microglial phenotype associated with ß-glucocerebrosidase inhibition, aimed at resetting the protective microglia-to-neuron communication.


Asunto(s)
Encéfalo/enzimología , Glucosilceramidasa/antagonistas & inhibidores , Microglía/enzimología , Neuronas/metabolismo , Neuroprotección/fisiología , Animales , Encéfalo/patología , Comunicación Celular/fisiología , Ratones , Microglía/patología , Neuronas/patología
9.
Cytokine ; 142: 155494, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33765652

RESUMEN

Interleukin-6 (IL-6) is associated with pathological cardiac hypertrophy and can be dramatically increased in serum after an acute strenuous exercise session. However, IL-6 is also associated with the increased production and release of anti-inflammatory cytokines and the inhibition of tumor necrosis factor-alpha (TNF-α) after chronic moderate exercise. To elucidate the relevance of IL-6 in inflammatory and hypertrophic signaling in the heart in response to an acute strenuous exercise session, we combined transcriptome analysis using the BXD mice database and exercised IL-6 knockout mice (IL-6KO). Bioinformatic analysis demonstrated that low or high-levels of Il6 mRNA in the heart did not change the inflammation- and hypertrophy-related genes in BXD mice strains. On the other hand, bioinformatic analysis revealed a strong positive correlation between Il6 gene expression in skeletal muscle with inflammation-related genes in cardiac tissue in several BXD mouse strains, suggesting that skeletal muscle-derived IL-6 could alter the heart's intracellular signals, particularly the inflammatory signaling. As expected, an acute strenuous exercise session increased IL-6 levels in wild-type, but not in IL-6KO mice. Despite not showing morphofunctional differences in the heart at rest, the IL-6KO group presented a reduction in physical performance and attenuated IL-6, TNF-α, and IL-1beta kinetics in serum, as well as lower p38MAPK phosphorylation, Ampkalpha expression, and higher Acta1 and Tnf gene expressions in the left ventricle in the basal condition. In response to strenuous exercise, IL-6 ablation was linked to a reduction in the pro-inflammatory response and higher activation of classical physiological cardiac hypertrophy proteins.


Asunto(s)
Biomarcadores/metabolismo , Corazón/fisiopatología , Inflamación/patología , Interleucina-6/deficiencia , Condicionamiento Físico Animal , Adenilato Quinasa/metabolismo , Animales , Biomarcadores/sangre , Cardiomegalia/sangre , Cardiomegalia/genética , Electrocardiografía , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Corazón/diagnóstico por imagen , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Descanso , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
10.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672321

RESUMEN

Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), are the strongest known genetic risk factor for Parkinson's disease (PD). The molecular mechanisms underlying the increased PD risk and the variable phenotypes observed in carriers of different GBA mutations are not yet fully elucidated. Extracellular vesicles (EVs) have gained increasing importance in neurodegenerative diseases since they can vehiculate pathological molecules potentially promoting disease propagation. Accumulating evidence showed that perturbations of the endosomal-lysosomal pathway can affect EV release and composition. Here, we investigate the impact of GCase deficiency on EV release and their effect in recipient cells. EVs were purified by ultracentrifugation from the supernatant of fibroblast cell lines derived from PD patients with or without GBA mutations and quantified by nanoparticle tracking analysis. SH-SY5Y cells over-expressing alpha-synuclein (α-syn) were used to assess the ability of patient-derived small EVs to affect α-syn expression. We observed that defective GCase activity promotes the release of EVs, independently of mutation severity. Moreover, small EVs released from PD fibroblasts carrying severe mutations increased the intra-cellular levels of phosphorylated α-syn. In summary, our work shows that the dysregulation of small EV trafficking and alpha-synuclein mishandling may play a role in GBA-associated PD.


Asunto(s)
Vesículas Extracelulares/patología , Fibroblastos/patología , Glucosilceramidasa/genética , Mutación , Enfermedad de Parkinson/genética , Células Cultivadas , Vesículas Extracelulares/metabolismo , Glucosilceramidasa/metabolismo , Humanos , Enfermedad de Parkinson/patología , Serina/metabolismo , alfa-Sinucleína/metabolismo
11.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182536

RESUMEN

The protective effects of chronic moderate exercise-mediated autophagy include the prevention and treatment of several diseases and the extension of lifespan. In addition, physical exercise may impair cellular structures, requiring the action of the autophagy mechanism for clearance and renovation of damaged cellular components. For the first time, we investigated the adaptations on basal autophagy flux in vivo in mice's liver, heart, and skeletal muscle tissues submitted to four different chronic exercise models: endurance, resistance, concurrent, and overtraining. Measuring the autophagy flux in vivo is crucial to access the functionality of the autophagy pathway since changes in this pathway can occur in more than five steps. Moreover, the responses of metabolic, performance, and functional parameters, as well as genes and proteins related to the autophagy pathway, were addressed. In summary, the regular exercise models exhibited normal/enhanced adaptations with reduced autophagy-related proteins in all tissues. On the other hand, the overtrained group presented higher expression of Sqstm1 and Bnip3 with negative morphological and physical performance adaptations for the liver and heart, respectively. The groups showed different adaptions in autophagy flux in skeletal muscle, suggesting the activation or inhibition of basal autophagy may not always be related to improvement or impairment of performance.


Asunto(s)
Autofagia/fisiología , Condicionamiento Físico Animal/fisiología , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Hígado/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocardio/citología , Miocardio/metabolismo , Especificidad de Órganos , Resistencia Física/genética , Resistencia Física/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Am J Physiol Cell Physiol ; 317(3): C502-C512, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31241988

RESUMEN

Sarcopenia, the age-associated loss of skeletal muscle mass and function, is coupled with declines in physical functioning leading to subsequent higher rates of disability, frailty, morbidity, and mortality. Aging and obesity independently contribute to muscle atrophy that is assumed to be a result of the activation of mutual physiological pathways. Understanding mechanisms contributing to the induction of skeletal muscle atrophy with aging and obesity is important for determining targets that may have pivotal roles in muscle loss in these conditions. We find that aging and obesity equally induce an anabolic resistance to acute skeletal muscle contraction as observed with decreases in anabolic signaling activation after contraction. Furthermore, treatment with the sphingosine-1-phosphate analog FTY720 for 4 wk increased lean mass and strength, and the anabolic signaling response to contraction was improved in obese but not older animals. To determine the role of chronic inflammation and different fatty acids on anabolic resistance in skeletal muscle cells, we overexpressed IKKß with and without exposure to saturated fatty acid (SFA; palmitic acid), polyunsaturated fatty acid (eicosapentaenoic acid), and monounsaturated fatty acid (oleic acid). We found that IKKß overexpression increased inflammation markers in muscle cells, and this chronic inflammation exacerbated anabolic resistance in response to SFA. Pretreatment with FTY720 reversed the inflammatory effects of palmitic acid in the muscle cells. Taken together, these data demonstrate chronic inflammation can induce anabolic resistance, SFA aggravates these effects, and FTY720 can reverse this by decreasing ceramide accumulation in skeletal muscle.


Asunto(s)
Envejecimiento/efectos de los fármacos , Clorhidrato de Fingolimod/uso terapéutico , Contracción Muscular/efectos de los fármacos , Obesidad/tratamiento farmacológico , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Envejecimiento/metabolismo , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Clorhidrato de Fingolimod/farmacología , Lisofosfolípidos/farmacología , Lisofosfolípidos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Distribución Aleatoria , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacología , Esfingosina/uso terapéutico , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología
13.
Cell Tissue Res ; 373(1): 183-193, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29185072

RESUMEN

The abnormal accumulation of α-synuclein aggregates in neurons, nerve fibers, or glial cells is the hallmark of a group of neurodegenerative diseases known collectively as α-synucleinopathies. Clinical, neuropathological, and experimental evidence strongly suggests that α-synuclein plays a role not only as a trigger of pathological processes at disease inception, but also as a mediator of pathological spreading during disease progression. Specific properties of α-synuclein, such as its ability to pass from one neuron to another, its tendency to aggregate, and its potential to generate self-propagating species, have been described and elucidated in animal models and may contribute to the relentless exacerbation of Parkinson's disease pathology in patients. Animal models used for studying α-synuclein accumulation, aggregation, and propagation are mostly based on three approaches: (1) intra-parenchymal inoculations of exogenous α-synuclein (e.g., synthetic α-synuclein fibrils), (2) transgenic mice, and (3) animals (mice or rats) in which α-synuclein overexpression is induced by viral vector injections. Whereas pathological α-synuclein changes are consistently observed in these models, important differences are also found. In particular, pronounced pathology in transgenic mice and viral vector-injected animals does not appear to involve self-propagating α-synuclein species. A critical discussion of these models reveals their strengths and limitations and provides the basis for recommendations concerning their use for future investigations.


Asunto(s)
alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Vectores Genéticos/metabolismo , Humanos
14.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29851235

RESUMEN

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Asunto(s)
Hormigas/fisiología , Biodiversidad , Animales , Clima , Ecosistema
15.
Exerc Sport Sci Rev ; 46(2): 86-91, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29346160

RESUMEN

Age-induced loss of skeletal muscle mass and function, termed sarcopenia, may be the result of diminished response to anabolic stimulation. This review will explore the hypothesis that alterations in the expression of microRNA with aging contributes to reduced muscle plasticity resulting in impaired skeletal muscle adaptations to exercise-induced anabolic stimulation.


Asunto(s)
Envejecimiento/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Adaptación Fisiológica , Expresión Génica , Humanos , MicroARNs/sangre , Sarcopenia/metabolismo , Sarcopenia/prevención & control , Transducción de Señal
16.
Brain ; 140(10): 2706-2721, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28969384

RESUMEN

Mutations in glucocerebrosidase 1 (GBA1) represent the most prevalent risk factor for Parkinson's disease. The molecular mechanisms underlying the link between GBA1 mutations and Parkinson's disease are incompletely understood. We analysed two aged (24-month-old) Gba1 mouse models, one carrying a knock-out mutation and the other a L444P knock-in mutation. A significant reduction of glucocerebrosidase activity was associated with increased total alpha-synuclein accumulation in both these models. Gba1 mutations alone did not alter the number of nigral dopaminergic neurons nor striatal dopamine levels. We then investigated the effect of overexpression of human alpha-synuclein in the substantia nigra of aged (18 to 21-month-old) L444P Gba1 mice. Following intraparenchymal injections of human alpha-synuclein carrying viral vectors, pathological accumulation of phosphorylated alpha-synuclein occurred within the transduced neurons. Stereological counts of nigral dopaminergic neurons revealed a significantly greater cell loss in Gba1-mutant than wild-type mice. These results indicate that Gba1 deficiency enhances neuronal vulnerability to neurodegenerative processes triggered by increased alpha-synuclein expression.


Asunto(s)
Dopamina/metabolismo , Glucosilceramidasa/genética , Mutación/genética , Neuronas/patología , Sustancia Negra/patología , alfa-Sinucleína/metabolismo , Factores de Edad , Animales , Encéfalo/metabolismo , Encéfalo/patología , Glucosilceramidasa/deficiencia , Humanos , Leucina/genética , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Prolina/genética , Desempeño Psicomotor/fisiología , Olfato/genética , Sustancia Negra/metabolismo , Transducción Genética , Tirosina 3-Monooxigenasa/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 313(3): R298-R304, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28659285

RESUMEN

The objective of the present investigation was to determine whether energy restriction (ER) influences expression of skeletal muscle-specific microRNA (miRNA) in circulation (c-myomiR) and whether changes in c-myomiR are associated with rates of whole body protein synthesis. Sixteen older (64 ± 2 yr) overweight (28.5 ± 1.2 kg/m2) men enrolled in this 35-day controlled feeding trial. A 7-day weight maintenance (WM) period was followed by 28 days of 30% ER. Whole body protein turnover was determined from [15N]glycine enrichments in 24-h urine collections, and c-myomiR (miR-1-3p, miR-133a-3p, miR-133b, and miR-206) expression was assessed from serum samples by RT-quantitative PCR upon completion of the WM and ER periods. Participants lost 4.4 ± 0.3 kg body mass during ER (P < 0.05). After 28 days of ER, miR-133a and miR-133b expression was upregulated (P < 0.05) compared with WM. When all four c-myomiR were grouped as c-myomiR score (sum of the median fold change of all myomiR), overall expression of c-myomiR was higher (P < 0.05) at ER than WM. Backward linear regression analysis of whole body protein synthesis and breakdown and carbohydrate, fat, and protein oxidation determined protein synthesis to be the strongest predictor of c-myomiR score. An inverse association (P < 0.05) was observed with ER c-myomiR score and whole body protein synthesis (r = -0.729, r2 = -0.530). Findings from the present investigation provide evidence that upregulation of c-myomiR expression profiles in response to short-term ER is associated with lower rates of whole body protein synthesis.


Asunto(s)
Restricción Calórica , Ingestión de Alimentos/fisiología , Retroalimentación Fisiológica/fisiología , MicroARNs , Músculo Esquelético/metabolismo , Biosíntesis de Proteínas/genética , Regulación hacia Arriba , Femenino , Humanos , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Proteoma/genética
19.
Ecology ; 98(3): 883-884, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27984661

RESUMEN

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Asunto(s)
Hormigas/fisiología , Bases de Datos Factuales , Ecología , Animales , Hormigas/clasificación , Ecosistema
20.
Acta Neuropathol ; 133(3): 381-393, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28012041

RESUMEN

Detection of α-synuclein lesions in peripheral tissues is a feature of human synucleinopathies of likely pathogenetic relevance and bearing important clinical implications. Experiments were carried out to elucidate the relationship between α-synuclein accumulation in the brain and in peripheral organs, and to identify potential pathways involved in long-distance protein transfer. Results of this in vivo study revealed a route-specific transmission of α-synuclein from the rat brain to the stomach. Following targeted midbrain overexpression of human α-synuclein, the exogenous protein was capable of reaching the gastric wall where it was accumulated into preganglionic vagal terminals. This brain-to-stomach connection likely involved intra- and inter-neuronal transfer of non-fibrillar α-synuclein that first reached the medulla oblongata, then gained access into cholinergic neurons of the dorsal motor nucleus of the vagus nerve and finally traveled via efferent fibers of these neurons contained within the vagus nerve. Data also showed a particular propensity of vagal motor neurons and efferents to accrue α-synuclein and deliver it to peripheral tissues; indeed, following its midbrain overexpression, human α-synuclein was detected within gastric nerve endings of visceromotor but not viscerosensory vagal projections. Thus, the dorsal motor nucleus of the vagus nerve represents a key relay center for central-to-peripheral α-synuclein transmission, and efferent vagal fibers may act as unique conduits for protein transfer. The presence of α-synuclein in peripheral tissues could reflect, at least in some synucleinopathy patients, an ongoing pathological process that originates within the brain and, from there, reaches distant organs innervated by motor vagal projections.


Asunto(s)
Fibras Autónomas Preganglionares/metabolismo , Encéfalo/metabolismo , Mucosa Gástrica/metabolismo , Nervio Vago/metabolismo , alfa-Sinucleína/metabolismo , Animales , Encéfalo/citología , Colina O-Acetiltransferasa/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Neuronas/metabolismo , Ganglio Nudoso/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Transducción Genética , Nervio Vago/fisiología , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA