RESUMEN
Understanding the structure and dynamic process of water at the solid-liquid interface is an extremely important topic in surface science, energy science and catalysis1-3. As model catalysts, atomically flat single-crystal electrodes exhibit well-defined surface and electric field properties, and therefore may be used to elucidate the relationship between structure and electrocatalytic activity at the atomic level4,5. Hence, studying interfacial water behaviour on single-crystal surfaces provides a framework for understanding electrocatalysis6,7. However, interfacial water is notoriously difficult to probe owing to interference from bulk water and the complexity of interfacial environments8. Here, we use electrochemical, in situ Raman spectroscopic and computational techniques to investigate the interfacial water on atomically flat Pd single-crystal surfaces. Direct spectral evidence reveals that interfacial water consists of hydrogen-bonded and hydrated Na+ ion water. At hydrogen evolution reaction (HER) potentials, dynamic changes in the structure of interfacial water were observed from a random distribution to an ordered structure due to bias potential and Na+ ion cooperation. Structurally ordered interfacial water facilitated high-efficiency electron transfer across the interface, resulting in higher HER rates. The electrolytes and electrode surface effects on interfacial water were also probed and found to affect water structure. Therefore, through local cation tuning strategies, we anticipate that these results may be generalized to enable ordered interfacial water to improve electrocatalytic reaction rates.
RESUMEN
The electrooxidation of catalyst surfaces is across various electrocatalytic reactions, directly impacting their activity, stability and selectivity. Precisely characterizing the electrooxidation on well-defined surfaces is essential to understanding electrocatalytic reactions comprehensively. Herein, we employed in situ Raman spectroscopy to monitor the electrooxidation process of palladium single crystal. Our findings reveal that the Pd surface's initial electrooxidation process involves forming *OH intermediate and ClO4 - ions facilitate the deprotonation process, leading to the formation of PdOx. Subsequently, under deep electrooxidation potential range, the oxygen atoms within PdOx contribute to creating surface-bound peroxide species, ultimately resulting in oxygen generation. The adsorption strength of *OH and the coverage of ClO4 - can be adjusted by the controllable electronic effect, resulting in different oxidation rates. This study offers valuable insights into elucidating the electrooxidation mechanisms underlying a range of electrocatalytic reactions, thereby contributing to the rational design of catalysts.
RESUMEN
Promoting the hydrogen oxidation reaction (HOR) activity and poisoning tolerance of electrocatalysts is crucial for the large-scale application of hydrogen-oxygen fuel cell. However, it is severely hindered by the scaling relations among different intermediates. Herein, lattice-contracted Pt-Rh in ultrasmall ternary L12-(Pt0.9Rh0.1)3V intermetallic nanoparticles (~2.2â nm) were fabricated to promote the HOR performances through an oxides self-confined growth strategy. The prepared (Pt0.9Rh0.1)3V displayed 5.5/3.7â times promotion in HOR mass/specific activity than Pt/C in pure H2 and dramatically limited activity attenuation in 1000â ppm CO/H2 mixture. In situ Raman spectra tracked the superior anti-CO* capability as a result of compressive strained Pt, and the adsorption of oxygen-containing species was promoted due to the dual-functional effect. Further assisted by density functional theory calculations, both the adsorption of H* and CO* on (Pt0.9Rh0.1)3V were reduced compared with that of Pt due to lattice contraction, while the adsorption of OH* was enhanced by introducing oxyphilic Rh sites. This work provides an effective tactic to stimulate the electrocatalytic performances by optimizing the adsorption of different intermediates severally.
RESUMEN
An insightful understanding of the interaction between the electrolyte and reaction intermediate and how promotion reaction occurs of electrolyte is challenging in the electrocatalysis reaction. Herein, theoretical calculations are used to investigate the reaction mechanism of CO2 reduction reaction to CO with different electrolytes at the Cu(111) surface. By analyzing the charge distribution of the chemisorbed CO2 (CO2 δ-) formation process, we find that the charge transfer is from metal electrode transfer to CO2 and the hydrogen bond interaction between electrolytes and CO2 δ- not only plays a key role in the stabilization of CO2 δ- structure but also reduces the formation energy of *COOH. In addition, the characteristic vibration frequency of intermediates in different electrolyte solutions shows that H2O is a component of HCO3 -, promoting CO2 adsorption and reduction. Our results provide essential insights into the role of electrolyte solutions in interface electrochemistry reactions and help understand the catalysis process at the molecular level.
RESUMEN
Transition metal oxide (TMO) anodes show inferior sodium ion storage performance compared with that of lithium ion storage owing to the larger radium size and heavier elemental mass of Na+ than Li+. Effective strategies are highly desired to improve the Na+ storage performance of TMOs for applications. In this work, using ZnFe2O4@xC nanocomposites as model materials for investigation, we found that by manipulating the particle sizes of the inner TMOs core and the features of outer carbon coating, the Na+ storage performance can be significantly improved. The ZnFe2O4@1C with a diameter of the inner ZnFe2O4 core of around 200 nm coated by a thin carbon layer of around 3 nm shows a specific capacity of only 120 mA h g-1. The ZnFe2O4@6.5C with a diameter of the inner ZnFe2O4 core of around 110 nm embedding in a porous interconnected carbon matrix displays a significantly improved specific capacity of 420 mA h g-1 at the same specific current. Furthermore, the latter shows an excellent cycling stability of 1000 cycles with a capacity retention of 90% of the initial 220 mA h g-1 specific capacity at 1.0 A g-1. TEM, electrochemical impedance spectroscopy, and kinetic analysis show that the inner ZnFe2O4 core with reduced particle size and the outer thicker and interconnected carbon matrix synergistically improve the active reaction sites, integrity, electric conductivity, and pseudocapacitive-controlled contribution of ZnFe2O4@xC nanocomposites, thus leading to an overall enhanced Na+ storage performance. Our findings create a universal, facile, and effective method to enhance the Na+ storage performance of the TMO@C nanomaterials.
RESUMEN
In situ monitoring of the evolution of intermediates and catalysts during hydrogen oxidation reaction (HOR) processes and elucidating the reaction mechanism are crucial in catalysis and energy science. However, spectroscopic information on trace intermediates on catalyst surfaces is challenging to obtain due to the complexity of interfacial environments and lack of in situ techniques. Herein, core-shell nanoparticle-enhanced Raman spectroscopy was employed to probe alkaline HOR processes on representative PtRu surfaces. Direct spectroscopic evidence of an OHad intermediate and RuOx (Ru(+3)/Ru(+4)) surface oxides is simultaneously obtained, verifying that Ru doping onto Pt promotes OHad adsorption on the RuOx surface to react with Had adsorption on the Pt surface to form H2O. In situ Raman, XPS, and DFT results reveal that RuOx coverage tunes the electronic structure of PtRuOx to optimize the adsorption energy of OHad on catalyst surfaces, leading to an improvement in HOR activity. Our findings provide mechanistic guidelines for the rational design of HOR catalysts with high activity.
RESUMEN
Directly monitoring the oxygen reduction reaction (ORR) process in situ is very important to deeply understand the reaction mechanism and is a critical guideline for the design of high-efficiency catalysts, but there is still lack of definite in situ evidence to clarify the effect between adsorbed intermediates and the strain/electronic effect for enhanced ORR performance. Herein, in situ surface-enhanced Raman spectroscopy (SERS) was employed to detect the intermediates during the ORR process on the Au@Pd@Pt core/shell heterogeneous nanoparticles (NPs). Direct spectroscopic evidence of the *OOH intermediate was obtained, and an obvious red shift of the *OOH frequency was identified with the controllable shell thickness of Pd. Detailed experimental characterizations and density functional theory (DFT) calculations demonstrated that such improved ORR activity after inducing Pd into Au@Pt NPs can be attributed to the optimized adsorbate-substrate interaction due to the strain and electronic effect, leading to a higher Pt-O binding energy and a lower O-O binding energy, which was conducive to O-O dissociation and promoted the subsequent reaction. Notably, this work illustrates a relationship between the performance and strain/electronic effect via the intermediate detected by SERS and paves the way for the construction of ORR electrocatalysts with high performance.
RESUMEN
As energy demands increase, electrocatalysis serves as a vital tool in energy conversion. Elucidating electrocatalytic mechanisms using in situ spectroscopic characterization techniques can provide experimental guidance for preparing high-efficiency electrocatalysts. Surface-enhanced Raman spectroscopy (SERS) can provide rich spectral information for ultratrace surface species and is extremely well suited to studying their activity. To improve the material and morphological universalities, researchers have employed different kinds of nanostructures that have played important roles in the development of SERS technologies. Different strategies, such as so-called borrowing enhancement from shell-isolated modes and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)-satellite structures, have been proposed to obtain highly effective Raman enhancement, and these methods make it possible to apply SERS to various electrocatalytic systems. Here, we discuss the development of SERS technology, focusing on its applications in different electrocatalytic reactions (such as oxygen reduction reactions) and at different nanostructure surfaces, and give a brief outlook on its development.
RESUMEN
Precise control and accurate understanding of the ordering degree of bimetallic nanocatalysts (BNs) are challenging yet crucial to acquire advanced materials for the oxygen reduction reaction (ORR). AuCu BNs with various ordering degrees were synthesized to evaluate the influence of ordering degree on the ORR at a molecular level using inâ situ Raman spectroscopy. The activity of AuCu BNs was improved by over 2â times after a disorder-to-order transition, making the performance of highly ordered AuCu BNs exceed that of benchmark Pt/C. Direct Raman spectroscopic evidence of key intermediate (*OH) demonstrates that the active site is the combination site of Au and Cu. Moreover, two distinct *OH species are observed on the ordered and disordered structure, and the ordered site is more beneficial for ORR due to its lower affinity to *OH. This work deepens the understanding on the important role of ordering degree on BNs and enables the design of improved catalysts.
RESUMEN
Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal-2D material interfaces remain unclear. Herein, hot-electron transfer at Au-graphene interfaces has been in situ studied using surface-enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot-electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene.
RESUMEN
Discharging of aprotic sodium-oxygen (Na-O2) batteries is driven by the cathodic oxygen reduction reaction in the presence of sodium cations (Na+-ORR). However, the mechanism of aprotic Na+-ORR remains ambiguous and is system dependent. In-situ electrochemical Raman spectroscopy has been employed to study the aprotic Na+-ORR processes at three atomically ordered Au(hkl) single-crystal surfaces for the first time, and the structure-intermediates/mechanism relationship has been identified at a molecular level. Direct spectroscopic evidence of superoxide on Au(110) and peroxide on Au(100) and Au(111) as intermediates/products has been obtained. Combining these experimental results with theoretical simulation has revealed that the surface effect of Au(hkl) electrodes on aprotic Na+-ORR activity is mainly caused by the different adsorption of Na+ and O2. This work enhances our understanding of aprotic Na+-ORR on Au(hkl) surfaces and provides further guidance for the design of improved Na-O2 batteries.
RESUMEN
Elucidating hydrogen oxidation reaction (HOR) mechanisms in alkaline conditions is vital for understanding and improving the efficiency of anion-exchange-membrane fuel cells. However, uncertainty remains around the alkaline HOR mechanism owing to a lack of direct in situ evidence of intermediates. In this study, in situ electrochemical surface-enhanced Raman spectroscopy (SERS) and DFT were used to study HOR processes on PtNi alloy and Pt surfaces, respectively. Spectroscopic evidence indicates that adsorbed hydroxy species (OHad ) were directly involved in HOR processes in alkaline conditions on the PtNi alloy surface. However, OHad species were not observed on the Pt surface during the HOR. We show that Ni doping promoted hydroxy adsorption on the platinum-alloy catalytic surface, improving the HOR activity. DFT calculations also suggest that the free energy was decreased by hydroxy adsorption. Consequently, tuning OH adsorption by designing bifunctional catalysts is an efficient method for promoting HOR activity.
RESUMEN
The study of the oxygen reduction reaction (ORR) at high-index Pt(hkl) single crystal surfaces has received considerable interest due to their well-ordered, typical atomic structures and superior catalytic activities. However, it is difficult to obtain direct spectral evidence of ORR intermediates during reaction processes, especially at high-index Pt(hkl) surfaces. Herein, in situ Raman spectroscopy has been employed to investigate ORR processes at high-index Pt(hkl) surfaces containing the [011Ì ] crystal zone-i.e., Pt(211) and Pt(311). Through control and isotope substitution experiments, in situ spectroscopic evidence of OH and OOH intermediates at Pt(211) and Pt(311) surfaces was successfully obtained. After detailed analysis based on the Raman spectra and theoretical simulation, it was deduced that the difference in adsorption of OOH at high-index surfaces has a significant effect on the ORR activity. This research illuminates and deepens the understanding of the ORR mechanism on high-index Pt(hkl) surfaces and provides theoretical guidance for the rational design of high activity ORR catalysts.
RESUMEN
The adsorption and electrooxidation of CO molecules at well-defined Pt(hkl) single-crystal electrode surfaces is a key step towards addressing catalyst poisoning mechanisms in fuel cells. Herein, we employed inâ situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) coupled with theoretical calculation to investigate CO electrooxidation on Pt(hkl) surfaces in acidic solution. We obtained the Raman signal of top- and bridge-site adsorbed CO* molecules on Pt(111) and Pt(100). In contrast, on Pt(110) surfaces only top-site adsorbed CO* was detected during the entire electrooxidation process. Direct spectroscopic evidence for OH* and COOH* species forming on Pt(100) and Pt(111) surfaces was afforded and confirmed subsequently via isotope substitution experiments and DFT calculations. In summary, the formation and adsorption of OH* and COOH* species plays a vital role in expediting the electrooxidation process, which relates with the pre-oxidation peak of CO electrooxidation. This work deepens knowledge of the CO electrooxidation process and provides new perspectives for the design of anti-poisoning and highly effective catalysts.
RESUMEN
Investigating the chemical nature of the adsorbed intermediate species on well-defined Cu single crystal substrates is crucial in understanding many electrocatalytic reactions. Herein, we systematically study the early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces in different pH electrolytes using in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). On Cu(111), for the first time, we identified surface OH species which convert to chemisorbed "O" before forming Cu2O in alkaline (0.01 M KOH) and neutral (0.1 M Na2SO4) electrolytes; while at the Cu(poly) surface, we only detected the presence of surface hydroxide. Whereas, in a strongly acidic solution (0.1 M H2SO4), sulfate replaces the hydroxyl/oxy species. This results improves the understanding of the reaction mechanisms of various electrocatalytic reactions.
RESUMEN
In this work, we have mainly studied SERS spectra of fresh human urine by using Au nanoparticles excited by 785 and 1 030 nm lasers, respectively. And the UV/Vis adsorption experiment of the Au nanoparticles mixed with different ratio of urine has been performed, and the obvious shifting of corresponding absorption band is observed. The result showed that the Au nanoparticles which have been synthesized by classical Fren's method can interact with urine, and the Au nanoparticles aggregations caused by the urine have strong SERS effect. Intense and repeatable spectra of the urine samples can be quickly obtained using Au colloids, which characterized by the scanning electron microscope (SEM) and the high-resolution transmission electron microscope (HRTEM) images, and it can be confirmed that the size of the Au nanoparticles is about 55 nm with a finite variation. When different spectra can be detected under different exciting lasers, the various biofluid to Au substrate ratios can generate different intense spectra. From the spectra of 785 nm laser, we can conclude that it has lower background and higher resolution with more detail information of this system contained human urine. For the 1 030 nm laser, a portable Raman instrument is helpful for on-site clinic treatment detection. It also gets well defined information and will be a good and convenient choice for urine analysis. It should note that this peak band located at 1 006 cm-1 may be the dominant nitrogen-containing component in urine. On the other hand, uric acid, urea, hypoxanthine as well as creatinine can be assigned; the other bands are still unknown, which might be attributed to biomarkers important for disease differentiation. Another result shows that different sample preparation can influence the SERS spectra with different ratio. We also have made a comparison of Raman spectra between 785 and 1 030 nm lasers to learn the difference between each other just like background and high-resolution. The current study indicates the SERS of urine might be a good choice and tool for urinalysis with potential diagnostic application, especially with the portable Raman instrument which would be an accurate and convenient approach for urine analysis. It is possible for SERS detection to be applied in not only the health diagnosis but also biological tissue in the future.
Asunto(s)
Espectrometría Raman , Orina/química , Adsorción , Oro , Humanos , Rayos Láser , Nanopartículas del Metal , Microscopía Electrónica de Transmisión , Nanopartículas , Urea , Urinálisis/métodosRESUMEN
Identifying the intermediate species in an electrocatalytic reaction can provide a great opportunity to understand the reaction mechanism and fabricate a better catalyst. However, the direct observation of intermediate species at a single crystal surface is a daunting challenge for spectroscopic techniques. In this work, electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) is utilized to in situ monitor the electrooxidation processes at atomically flat Au(hkl) single crystal electrode surfaces. We systematically explored the effects of crystallographic orientation, pH value, and anion on electrochemical behavior of intermediate (AuOH/AuO) species. The experimental results are well correlated with our periodic density functional theory calculations and corroborate the long-standing speculation based on theoretical calculations in previous electrochemical studies. The presented in situ electrochemical SHINERS technique offers a unique way for a real-time investigation of an electrocatalytic reaction pathway at various well-defined noble metal surfaces.
RESUMEN
The dynamics and chemistry of interfacial water are essential components of electrocatalysis because the decomposition and formation of water molecules could dictate the protonation and deprotonation processes on the catalyst surface. However, it is notoriously difficult to probe interfacial water owing to its location between two condensed phases, as well as the presence of external bias potentials and electrochemically induced reaction intermediates. An atomically flat single-crystal surface could offer an attractive platform to resolve the internal structure of interfacial water if advanced characterization tools are developed. To this end, here we report a protocol based on the combination of in situ Raman spectroscopy and ab initio molecular dynamics (AIMD) simulations to unravel the directional molecular features of interfacial water. We present the procedures to prepare single-crystal electrodes, construct a Raman enhancement mode with shell-isolated nanoparticle, remove impurities, eliminate the perturbation from bulk water and dislodge the hydrogen bubbles during in situ electrochemical Raman experiments. The combination of the spectroscopic measurements with AIMD simulation results provides a roadmap to decipher the potential-dependent molecular orientation of water at the interface. We have prepared a detailed guideline for the application of combined in situ Raman and AIMD techniques; this procedure may take a few minutes to several days to generate results and is applicable to a variety of disciplines ranging from surface science to energy storage to biology.
Asunto(s)
Simulación de Dinámica Molecular , Espectrometría Raman , Agua/química , Electrodos , HidrógenoRESUMEN
Ruthenium exhibits comparable or even better alkaline hydrogen evolution reaction activity than platinum, however, the mechanistic aspects are yet to be settled, which are elucidated by combining in situ Raman spectroscopy and theoretical calculations herein. We simultaneously capture dynamic spectral evidence of Ru surfaces, interfacial water, *H and *OH intermediates. Ru surfaces exist in different valence states in the reaction potential range, dissociating interfacial water differently and generating two distinct *H, resulting in different activities. The local cation tuning effect of hydrated Na+ ion water and the large work function of high-valence Ru(n+) surfaces promote interfacial water dissociation. Moreover, compared to low-valence Ru(0) surfaces, high-valence Ru(n+) surfaces have more moderate adsorption energies for interfacial water, *H, and *OH. They, therefore, facilitate the activity. Our findings demonstrate the regulation of valence state on interfacial water, intermediates, and finally the catalytic activity, which provide guidelines for the rational design of high-efficiency catalysts.
RESUMEN
Palladium-based nanocatalysts play an important role in catalyzing the cathode oxygen reduction reaction (ORR) for fuel cells working under alkaline conditions, but the performance still needs to be improved to meet the requirements for large-scale applications. Herein, Au@Pd core-shell nanowires have been developed by coating Pd atomic layers on ultrafine gold nanowires and display outstanding electrocatalytic performance towards alkaline ORR. It is found that Pd overlayers with atomic thickness can be coated on 3 nm Au nanowires under CO atmosphere and completely cover the surfaces. The obtained ultrafine Au@Pd nanowires exhibit an electrochemical active area (ECSA) of 68.5 m2/g and a mass activity of 0.91 A/mg (at 0.9 V vs. RHE), which is around 3.1 and 15.2 times higher than that of commercial Pd/C. The activity loss of the ultrafine Au@Pd nanowire after 10,000 cycles of accelerated degradation tests is only â¼20 %, demonstrating its much better stability compared to commercial Pd/C. Further characterizations combined with density functional theory (DFT) calculations demonstrate that the electronic interactions between Pd atomic layers and underlying Au can increase the electronic density of Pd and promote the efficient activation of oxygen, thus leading to the improved ORR performance.