Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small Methods ; : e2400174, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594890

RESUMEN

Non-flow aqueous zinc-bromine batteries (AZBBs) are highly attractive owing to their lightweight construction and largely reduced cost compared with the flow ones. Yet, their development is restricted by the sluggish reaction kinetics of Br2/Br-, the shuttle of soluble polybromide species (Brn -, n is odd), and the poor stability of Zn-based anode. Herein, an effective alkaline-neutral electrolyte decoupling system is constructed to mitigate these issues, where nitrogen-doped carbon felt with high catalytic activity to Br2/Br- reaction is developed for cathode, a cost-effective cation exchange membrane (CEM) of polyethersulfone/sulfonated polyether ether ketone (PES/SPEEK-M) that can stop Brn - is used as separator, and glucose that can inhibit dendrites is introduced as anolyte additive. The constructed flowless AZBB mainly consists of two separate redox couples, including Zn/Zn(OH)4 2- in alkaline anolyte and Br2/Br- in neutral media, where non-cations (e.g. OH-, Zn(OH)4 2-, H2O,  and Brn -) can be restricted to their respective chamber by the PES/SPEEK-M while cations can pass by. In the optimized system, good electrochemical performance is achieved, mainly including a surprising discharge voltage of 2.01 V, a high average Coulombic efficiency of 96.7%, and a good cycling life of ≈1000 cycles without obvious capacity decay at a fixed charge capacity of 2 mAh cm-2.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38684068

RESUMEN

Aqueous zinc-bromine batteries (ZBBs) are highly promising because of the advantages of safety and cost. Compared with flow ZBBs, static ones without the assistance of pumping and tank components possess decreased cost and increased energy density and efficiency. Yet, the issues of Zn dendrites and shuttle effect of polybromide ions (Brn-) are more serious in nonflow ZBBs. Meanwhile, the hydrogen evolution reaction (HER) and the sluggish kinetics of the Br2/Br- couple are also in-negligible. Herein, a compressive approach, the cation-exchange membrane (CEM) coating on Zn anodes and N-defect decoration toward carbon felt cathodes, is developed. The CEM with cation-only function can inhibit the formation of Zn dendrites via tuning the Zn2+ flow at the interface, block the noncationic substances, and hence prevent the shuttle of Br2/Brn- and the water decomposition-concerned HER. The optimized nonflow ZBBs can deliver high Coulombic, voltage, and energy efficiencies of 94.1, 92.8, and 87.4%, respectively, which can be well remained in 1000 cycles. Meanwhile, the output voltage is as high as 1.7 V at 10 mA cm-2 with a high areal capacity of 2 mA h cm-2, and a LED with a rated voltage of 1.6 V can be powered successfully, exhibiting high application value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA