Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048310

RESUMEN

Splicing, a process of intron removal from eukaryotic RNA transcripts, is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency giving rise to alternative splicing products. At the same time, splice sites might be utilised at a variable rate. We used 5-ethynyl uridine labelling to sequence a nascent transcriptome of HeLa cells and deduce the rate of splicing for each donor and acceptor splice site. The following correlation analysis allowed us to assess a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as splicing rate decrease with a decreased complementarity of donor splice site to U1 and acceptor sites to U2 snRNAs, or an acceleration of donor site usage if an upstream acceptor site is located at a shorter distance. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of acceptor splicing site utilization, or the differences in splicing rate between long, short and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the polyA site, which might be explained by a cooperativity of the splicing and polyadenylation. In addition, we performed the analysis of splicing kinetics of SF3B4 knockdown cells which suggested the impairment of U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field as it provides general splicing rate dependencies as well as helps justify the existence of slowly removed splice sites, e.g. to ensure alternative splicing.

2.
RNA ; 30(3): 298-307, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38164606

RESUMEN

Several methods are available to visualize and assess the kinetics and efficiency of elemental steps of protein biosynthesis. However, each of these methods has its own limitations. Here, we present a novel, simple and convenient tool for monitoring stepwise in vitro translation initiated by BODIPY-Met-tRNA. Synthesis and release of very short, 1-7 amino acids, BODIPY-labeled peptides, can be monitored using urea-polyacrylamide gel electrophoresis. Very short BODIPY-labeled oligopeptides might be resolved this way, in contrast to widely used Tris-tricine gel electrophoresis, which is suitable to separate peptides larger than 1 kDa. The method described in this manuscript allows one to monitor the steps of translation initiation, peptide transfer, translocation, and termination as well as their inhibition at an unprecedented single amino acid resolution.


Asunto(s)
Compuestos de Boro , Péptidos , Aminoacil-ARN de Transferencia , Aminoacil-ARN de Transferencia/química , Péptidos/metabolismo , ARN de Transferencia/metabolismo , Electroforesis en Gel de Poliacrilamida , Biosíntesis de Proteínas
3.
J Nat Prod ; 87(4): 664-674, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38362867

RESUMEN

We report the molecular mechanism of action of gausemycins and the isolation of new members of the family, gausemycins C (1c), D (1d), E (1e), and F (1f), the minor components of the mixture. To elucidate the mechanism of action of gausemycins, we investigated the antimicrobial activity of the most active compounds, gausemycins A and B, in the presence of Ca2+, other metal ions, and phosphate. Gausemycins require a significantly higher Ca2+ concentration for maximum activity than daptomycin but lower than that required for malacidine and cadasides. Species-specific antimicrobial activity was found upon testing against a wide panel of Gram-positive bacteria. Membranoactivity of gausemycins was demonstrated upon their interactions with model lipid bilayers and micelles. The pore-forming ability was found to be dramatically dependent on the Ca2+ concentration and the membrane lipid composition. An NMR study of gausemycin B in zwitterionic and anionic micelles suggested the putative structure of the gausemycin/membrane complex and revealed the binding of Ca2+ by the macrocyclic domain of the antibiotic.


Asunto(s)
Antibacterianos , Calcio , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Calcio/metabolismo , Estructura Molecular , Bacterias Grampositivas/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Daptomicina/farmacología , Daptomicina/química , Membrana Dobles de Lípidos/química , Micelas
4.
Biochemistry (Mosc) ; 89(1): 27-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467544

RESUMEN

Autophagy is a central process for degradation of intracellular components that do not operate correctly. Molecular mechanisms underlying this process are extremely difficult to study, since they involve a large number of participants. The main task of autophagy is redistribution of cellular resources in response to environmental changes, such as starvation. Recent studies show that autophagy regulation could be the key to achieve healthy longevity, as well as to create therapeutic agents for treatment of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Thus, development of autophagy activators with established detailed mechanism of action is a really important area of research. Several commercial companies are at various stages of development of such molecules, and some of them have already begun to introduce autophagy activators to the market.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Humanos , Autofagia/fisiología , Enfermedad de Alzheimer/metabolismo
5.
Biochemistry (Mosc) ; 89(1): 1-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467543

RESUMEN

Autophagy is the process by which cell contents, such as aggregated proteins, dysfunctional organelles, and cell structures are sequestered by autophagosome and delivered to lysosomes for degradation. As a process that allows the cell to get rid of non-functional components that tend to accumulate with age, autophagy has been associated with many human diseases. In this regard, the search for autophagy activators and the study of their mechanism of action is an important task for treatment of many diseases, as well as for increasing healthy life expectancy. Plants are rich sources of autophagy activators, containing large amounts of polyphenolic compounds in their composition, which can be autophagy activators in their original form, or can be metabolized by the intestinal microbiota to active compounds. This review is devoted to the plant-based autophagy activators with emphasis on the sources of their production, mechanism of action, and application in various diseases. The review also describes companies commercializing natural autophagy activators.


Asunto(s)
Autofagia , Plantas , Humanos , Autofagia/fisiología , Lisosomas/metabolismo
6.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062905

RESUMEN

The proper functioning and assembly of the sperm flagella structures contribute significantly to spermatozoa motility and overall male fertility. However, the fine mechanisms of assembly steps are poorly studied due to the high diversity of cell types, low solubility of the corresponding protein structures, and high tissue and cell specificity. One of the open questions for investigation is the attachment of longitudinal columns to the doublets 3 and 8 of axonemal microtubules through the outer dense fibers. A number of mutations affecting the assembly of flagella in model organisms are known. Additionally, evolutionary genomics data and comparative analysis of flagella morphology are available for a set of non-model species. This review is devoted to the analysis of diverse ultrastructures of sperm flagellum of Metazoa combined with an overview of the evolutionary distribution and function of the mammalian fibrous sheath proteins.


Asunto(s)
Cola del Espermatozoide , Espermatozoides , Masculino , Animales , Espermatozoides/metabolismo , Espermatozoides/ultraestructura , Espermatozoides/fisiología , Cola del Espermatozoide/ultraestructura , Cola del Espermatozoide/metabolismo , Humanos , Axonema/ultraestructura , Axonema/metabolismo , Motilidad Espermática/fisiología
7.
J Biol Chem ; 298(5): 101914, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398352

RESUMEN

N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.


Asunto(s)
Acetiltransferasas , Bacterias/metabolismo , Factor Tu de Elongación Peptídica , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas Ribosómicas , Ribosomas/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-33593838

RESUMEN

Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in healthcare, therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. An attractive class of compounds is nybomycins, reported to be "reverse antibiotics" that selectively inhibit growth of some Gram-positive FQ-resistant bacteria by targeting the mutant form of DNA gyrase, while being inactive against wild-type strains with FQ-sensitive gyrases. The strong "reverse" effect was demonstrated only for a few Gram-positive organisms resistant to FQs due to the S83L/I mutation in GyrA subunit of DNA gyrase. However, the activity of nybomycins has not been extensively explored among Gram-negative species. Here, we observed that in Gram-negative E. coli ΔtolC strain with enhanced permeability, wild-type gyrase and GyrA S83L mutant, resistant to fluoroquinolones, are both similarly sensitive to nybomycin.

9.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108753

RESUMEN

Small peptides compose a large share of the mitochondrial proteome. Mitoregulin (Mtln) is a mitochondrial peptide known to contribute to the respiratory complex I functioning and other processes in mitochondria. In our previous studies, we demonstrated that Mtln knockout mice develop obesity and accumulate triglycerides and other oxidation substrates in serum, concomitant with an exhaustion of tricarboxylic acids cycle intermediates. Here we examined the functional role of Mtln in skeletal muscles, one of the major energy consuming tissues. We observed reduced muscle strength for Mtln knockout mice. Decrease of the mitochondrial cardiolipin and concomitant increase in monolysocardiolipin concentration upon Mtln inactivation is likely to be a consequence of imbalance between oxidative damage and remodeling of cardiolipin. It is accompanied by the mitochondrial creatine kinase octamer dissociation and suboptimal respiratory chain performance in Mtln knockout mice.


Asunto(s)
Cardiolipinas , Creatina , Ratones , Animales , Cardiolipinas/metabolismo , Creatina/metabolismo , Mitocondrias , Músculo Esquelético/metabolismo , Péptidos/metabolismo , Ratones Noqueados , Mitocondrias Musculares
10.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240452

RESUMEN

A small protein, Mitoregulin (Mtln), localizes in mitochondria and contributes to oxidative phosphorylation and fatty acid metabolism. Mtln knockout mice develop obesity on a high-fat diet, demonstrating elevated cardiolipin damage and suboptimal creatine kinase oligomerization in muscle tissue. Kidneys heavily depend on the oxidative phosphorylation in mitochondria. Here we report kidney-related phenotypes in aged Mtln knockout mice. Similar to Mtln knockout mice muscle mitochondria, those of the kidney demonstrate a decreased respiratory complex I activity and excessive cardiolipin damage. Aged male mice carrying Mtln knockout demonstrated an increased frequency of renal proximal tubules' degeneration. At the same time, a decreased glomerular filtration rate has been more frequently detected in aged female mice devoid of Mtln. An amount of Mtln partner protein, Cyb5r3, is drastically decreased in the kidneys of Mtln knockout mice.


Asunto(s)
Cardiolipinas , Proteínas Mitocondriales , Masculino , Femenino , Ratones , Animales , Cardiolipinas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Riñón/metabolismo , Ratones Noqueados
11.
RNA ; 26(6): 715-723, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144191

RESUMEN

Macrolides are one of the most successful and widely used classes of antibacterials, which kill or stop the growth of pathogenic bacteria by binding near the active site of the ribosome and interfering with protein synthesis. Dirithromycin is a derivative of the prototype macrolide erythromycin with additional hydrophobic side chain. In our recent study, we have discovered that the side chain of dirithromycin forms lone pair-π stacking interaction with the aromatic imidazole ring of the His69 residue in ribosomal protein uL4 of the Thermus thermophilus 70S ribosome. In the current work, we found that neither the presence of the side chain, nor the additional contact with the ribosome, improve the binding affinity of dirithromycin to the ribosome. Nevertheless, we found that dirithromycin is a more potent inhibitor of in vitro protein synthesis in comparison with its parent compound, erythromycin. Using high-resolution cryo-electron microscopy, we determined the structure of the dirithromycin bound to the translating Escherichia coli 70S ribosome, which suggests that the better inhibitory properties of the drug could be rationalized by the side chain of dirithromycin pointing into the lumen of the nascent peptide exit tunnel, where it can interfere with the normal passage of the growing polypeptide chain.


Asunto(s)
Antibacterianos/química , Eritromicina/análogos & derivados , Inhibidores de la Síntesis de la Proteína/química , Ribosomas/química , Antibacterianos/farmacología , Microscopía por Crioelectrón , Eritromicina/química , Eritromicina/farmacología , Escherichia coli/genética , Modelos Moleculares , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Ribosómico 23S/química
12.
Nat Chem Biol ; 16(10): 1071-1077, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32601485

RESUMEN

The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.


Asunto(s)
Amycolatopsis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Farmacorresistencia Bacteriana , Escherichia coli , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutación , Naftacenos/química , Naftacenos/farmacología , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Conformación Proteica , Ribosomas/metabolismo
13.
Mol Cell ; 56(4): 531-40, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25306919

RESUMEN

We demonstrate that the antibiotic amicoumacin A (AMI) is a potent inhibitor of protein synthesis. Resistance mutations in helix 24 of the 16S rRNA mapped the AMI binding site to the small ribosomal subunit. The crystal structure of bacterial ribosome in complex with AMI solved at 2.4 Å resolution revealed that the antibiotic makes contacts with universally conserved nucleotides of 16S rRNA in the E site and the mRNA backbone. Simultaneous interactions of AMI with 16S rRNA and mRNA and the in vivo experimental evidence suggest that it may inhibit the progression of the ribosome along mRNA. Consistent with this proposal, binding of AMI interferes with translocation in vitro. The inhibitory action of AMI can be partly compensated by mutations in the translation elongation factor G.


Asunto(s)
Antibacterianos/química , Cumarinas/química , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/química , Estabilidad del ARN , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión , Cumarinas/farmacología , Cristalografía por Rayos X , Farmacorresistencia Bacteriana , Escherichia coli , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Factor G de Elongación Peptídica/genética , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Staphylococcus aureus/genética , Thermus thermophilus
14.
Nucleic Acids Res ; 48(12): 6931-6942, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32427319

RESUMEN

First triplets of mRNA coding region affect the yield of translation. We have applied the flowseq method to analyze >30 000 variants of the codons 2-11 of the fluorescent protein reporter to identify factors affecting the protein synthesis. While the negative influence of mRNA secondary structure on translation has been confirmed, a positive role of rare codons at the beginning of a coding sequence for gene expression has not been observed. The identity of triplets proximal to the start codon contributes more to the protein yield then more distant ones. Additional in-frame start codons enhance translation, while Shine-Dalgarno-like motifs downstream the initiation codon are inhibitory. The metabolic cost of amino acids affects the yield of protein in the poor medium. The most efficient translation was observed for variants with features resembling those of native Escherichia coli genes.


Asunto(s)
Codón Iniciador/genética , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Mensajero/genética , Codón Iniciador/ultraestructura , Escherichia coli/genética , Proteínas Fluorescentes Verdes/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/ultraestructura , Ribosomas/genética , Ribosomas/ultraestructura
15.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742896

RESUMEN

In the bid to survive and thrive in an environmental setting, bacterial species constantly interact and compete for resources and space in the microbial ecosystem. Thus, they have adapted to use various antibiotics and toxins to fight their rivals. Simultaneously, they have evolved an ability to withstand weapons that are directed against them. Several bacteria harbor colicinogenic plasmids which encode toxins that impair the translational apparatus. One of them, colicin E3 ribotoxin, mediates cleavage of the 16S rRNA in the decoding center of the ribosome. In order to thrive upon deployment of such ribotoxins, competing bacteria may have evolved counter-conflict mechanisms to prevent their demise. A recent study demonstrated the role of PrfH and the RtcB2 module in rescuing a damaged ribosome and the subsequent re-ligation of the cleaved 16S rRNA by colicin E3 in vitro. The rtcB2-prfH genes coexist as gene neighbors in an operon that is sporadically spread among different bacteria. In the current study, we report that the RtcB2-PrfH module confers resistance to colicin E3 toxicity in E. coli ATCC25922 cells in vivo. We demonstrated that the viability of E. coli ATCC25922 strain that is devoid of rtcB2 and prfH genes is impaired upon action of colicin E3, in contrast to the parental strain which has intact rtcB2 and prfH genes. Complementation of the rtcB2 and prfH gene knockout with a high copy number-plasmid (encoding either rtcB2 alone or both rtcB2-prfH operon) restored resistance to colicin E3. These results highlight a counter-conflict system that may have evolved to thwart colicin E3 activity.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Colicinas , Proteínas de Escherichia coli/metabolismo , Colicinas/genética , Colicinas/farmacología , Ecosistema , Escherichia coli/genética , Operón , Plásmidos/genética , ARN Ribosómico 16S
16.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293163

RESUMEN

Flow-seq is a method that combines fluorescently activated cell sorting and next-generation sequencing to deduce a large amount of data about translation efficiency from a single experiment. Here, we constructed a library of fluorescent protein-based reporters preceded by a set of 648 natural 5'-untranslated regions (5'-UTRs) of Escherichia coli genes. Usually, Flow-seq libraries are constructed using uniform-length sequence elements, in contrast to natural situations, where functional elements are of heterogenous lengths. Here, we demonstrated that a 5'-UTR library of variable length could be created and analyzed with Flow-seq. In line with previous Flow-seq experiments with randomized 5'-UTRs, we observed the influence of an RNA secondary structure and Shine-Dalgarno sequences on translation efficiency; however, the variability of these parameters for natural 5'-UTRs in our library was smaller in comparison with randomized libraries. In line with this, we only observed a 30-fold difference in translation efficiency between the best and worst bins sorted with this factor. The results correlated with those obtained with ribosome profiling.


Asunto(s)
Escherichia coli , Ribosomas , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones no Traducidas 5'/genética , Ribosomas/genética , Ribosomas/metabolismo , Biblioteca de Genes , Biosíntesis de Proteínas
17.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682734

RESUMEN

Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m4C839 residue (human numbering). Homozygous Mettl15-/- mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15-/- mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15-/- mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15-/- knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15-/- knockout mice a suitable model for mild mitochondriopathies.


Asunto(s)
Mitocondrias , Ribosomas Mitocondriales , Animales , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Procesamiento Postranscripcional del ARN
18.
Bioorg Med Chem Lett ; 43: 128055, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33892103

RESUMEN

The antibacterial properties of close noscapine analogs have not been previously reported. We used our pDualrep2 double-reporter High Throughput Screening (HTS) platform to identify a series of noscapine derivatives with promising antibacterial activity. The platform is based on RPF (SOS-response/DNA damage) and Katushka2S (inhibition of translation) proteins and simultaneously provides information on antibacterial activity and the mechanism of action of small-molecule compounds against E. coli. The most potent compound exhibited an MIC of 13.5 µM(6.25 µg/ml) and a relatively low cytotoxicity against HEK293 cells (CC50 = 71 µM, selectivity index: ~5.5). Some compounds from this series induced average Katushka2S reporter signals, indicating inhibition of translation machinery in the bacteria; however, these compounds did not attenuate translation in vitro in a luciferase-based translation assay. The most effective compounds did not significantly arrest the mitotic cycle in HEK293 cells, in contrast to the parent compound in a flow cytometry assay. Several molecules showed activity against clinically relevant gram-negative and gram-positive bacterial strains. Compounds from the discovered series can be reasonably regarded as good templates for further development and evaluation.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Noscapina/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Noscapina/síntesis química , Noscapina/química , Relación Estructura-Actividad
19.
Arch Pharm (Weinheim) ; 354(3): e2000281, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33245149

RESUMEN

Delocalized lipophilic cations (DLCs) are known as mitochondria-addressed molecules. Mitochondria targeting may provide opportunities for tumor detection. DLCs may have antioxidant or anticancer properties. In this study, we focused on the toxicity and localization of 2-[(E)-2-(5-fluoro-2-methyl-1H-indol-3-yl)ethenyl]-1,6-dimethylpyridin-1-ium iodide (62E2), which has recently been found as a novel cytotoxic fluorescent compound. The excitation maximum of 62E2 is 452 ± 10 nm and its emission maximum is 579 ± 10 nm. It is accumulated in the cells and stains mitochondria in nanomolar concentrations. 62E2 is cytotoxic and mitotoxic in low micromolar concentrations, and it demonstrates some selectivity of cytotoxicity against A549 cancer cells. The closest analog of 62E2 is F16, which is the fluorescent mitotoxic agent that has been described earlier as a potential anticancer agent. We hope that 62E2 described here is useful in expanding the diversity of cyanine fluorescent mitochondrial dyes and the analysis of their structure-activity relationships.


Asunto(s)
Antineoplásicos/farmacología , Colorantes Fluorescentes/farmacología , Mitocondrias/efectos de los fármacos , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Humanos , Mitosis/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad
20.
J Asian Nat Prod Res ; 23(10): 992-1000, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32924591

RESUMEN

One new virginiamycin derivative, 'beilunmycin' (1), and three known virginiamycin antibiotics, 16-hydroxy-virginiamycin M1 (2), virginiamycin M2 (3), and virginiamycin M1 (4), were isolated from the culture of a mangrove-derived endophytic Streptomyces sp. 2BBP-J2. The structures were characterized on the basis of their spectroscopic data, and the absolute configuration of 1 was established by ECD calculations. Compounds 1-4 exhibited antibacterial activities against Gram-positive bacteria, with MIC values in the range of 0.5-16 µg/ml. All the compounds demonstrated strong protein translation-stalling activity, with minimal concentrations detected with pDualrep2 in the range of 1.9-5.9 nmol.


Asunto(s)
Streptomyces , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Biosíntesis de Proteínas , Streptomyces/metabolismo , Virginiamicina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA