Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Anal Chem ; 94(32): 11113-11117, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35913896

RESUMEN

Gas chromatography multiplexed with cyclic ion mobility mass spectrometry is a comprehensive two-dimensional separation technique that can resolve compounds that would otherwise coelute in a single-dimension separation. The cyclic geometry of the ion mobility cell enables ions to travel multiple passes, increasing their drift times to the detector and relative separation. However, the quality of the separation may be obfuscated when "wrap-around" occurs, during which speedier ions catch up with slower ion populations when allowed to travel through more than one pass. Consequently, cyclic ion mobility is incorrectly perceived as a targeted approach that requires preselection of ions prior to separation. The present study demonstrates that "wrap-around" can be mitigated by comparing drift times measured during single- and multipass experiments and extrapolating the number of passes experienced by each ion. This straightforward calculation results in the "unwrapping" of cyclic ion mobility data so that the experiments can be interpreted in a nontargeted way while reaping the benefit of peak capacities that rival those achieved using other comprehensive two-dimensional separations.


Asunto(s)
Espectrometría de Movilidad Iónica , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Iones/química , Espectrometría de Masas/métodos
2.
Anal Chem ; 94(31): 11096-11103, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35912800

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) have been widely used since the 1940s in industry and everyday household products. They also persist in the environment and bioaccumulate in humans and wildlife. Despite these concerns, the identities of most PFASs in environmental and biological samples are unknown. Herein, we describe a novel cyclic ion mobility mass spectrometer (cIMS), hyphenated with gas chromatography (GC) atmospheric pressure chemical ionization, that can reveal the presence of unknown PFASs on the basis of the ratio of their mass and collision cross section (CCS). Prediction of the CCS of ca. 20,000 chemicals used in industry and commerce indicates that most compounds characterized by CCS values that are less than the sum of 100 Å2 and one-fifth of their mass are either PFASs or polybrominated flame retardants. When this filter is applied to GC-cIMS data collected from a set of 20 indoor dust samples, PFAS compounds are revealed without prior knowledge of their occurrence. Validation of this approach was performed using SRM 2585, a standard reference material of household dust, by comparing the PFASs detected with those (tentatively) identified in previous studies. Chlorofluoro phthalimides tentatively identified previously were confirmed with a synthesized standard. The method also reveals the presence of chlorofluoro n-alkanes as an emerging class of "forever chemicals" that contaminate the indoor environment.


Asunto(s)
Fluorocarburos , Cromatografía Liquida , Polvo/análisis , Fluorocarburos/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masas
3.
Molecules ; 26(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34834002

RESUMEN

Gas chromatography-high-resolution mass spectrometry (GC-HRMS) is a powerful nontargeted screening technique that promises to accelerate the identification of environmental pollutants. Currently, most GC-HRMS instruments are equipped with electron ionization (EI), but atmospheric pressure ionization (API) ion sources have attracted renewed interest because: (i) collisional cooling at atmospheric pressure minimizes fragmentation, resulting in an increased yield of molecular ions for elemental composition determination and improved detection limits; (ii) a wide range of sophisticated tandem (ion mobility) mass spectrometers can be easily adapted for operation with GC-API; and (iii) the conditions of an atmospheric pressure ion source can promote structure diagnostic ion-molecule reactions that are otherwise difficult to perform using conventional GC-MS instrumentation. This literature review addresses the merits of GC-API for nontargeted screening while summarizing recent applications using various GC-API techniques. One perceived drawback of GC-API is the paucity of spectral libraries that can be used to guide structure elucidation. Herein, novel data acquisition, deconvolution and spectral prediction tools will be reviewed. With continued development, it is anticipated that API may eventually supplant EI as the de facto GC-MS ion source used to identify unknowns.

4.
Anal Chem ; 91(17): 10949-10954, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31364353

RESUMEN

Organic compound characterization of highly complex matrices involves scientific challenges, such as the diversity of "true" unknowns, the concentration ranges of various compound classes, and limited available amounts of sample. Therefore, discovery-based multidimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry (GC×GC-HRToFMS) is increasingly applied. Nevertheless, most studies focus on target analysis and tend to disregard important details of the sample composition. The increased peak or separation capacity of GC×GC-ToFMS allows for in-depth chemical analysis of the molecular composition. However, high amounts of data, containing several thousands of compounds per experiment, are generally acquired during such analyses. Coupling GC×GC to high-resolution mass spectrometry further increases the amount of data and therefore requires advanced data reduction and mining techniques. Commonly, the main approach for the evaluation of GC×GC-HRToFMS data sets either focuses on the chromatographic separation (e.g., group type analysis), or utilizes exact mass data applying Kendrick mass defect analysis or van Krevelen plots. The presented approach integrates the accurate mass data and the chromatographic information by combining Kendrick mass defect information and knowledge-based rules. This combination allows for fast, visual data screening as well as quantitative estimation of the sample's composition. Moreover, the resulting sample classification significantly reduces the number of variables, allowing distinct chemometric analysis in nontargeted studies, such as detailed hydrocarbon analyses and environmental and forensic investigations.

5.
Anal Chem ; 90(8): 5466-5473, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29580048

RESUMEN

Hydraulic fracturing is an increasingly common technique for the extraction of natural gas entrapped in shale formations. This technique has been highly criticized due to the possibility of environmental contamination, underscoring the need for method development to identify chemical factors that could be utilized in point-source identification of environmental contamination events. Here, we utilize comprehensive two-dimensional gas chromatography (GC × GC) coupled to high-resolution time-of-flight (HRT) mass spectrometry, which offers a unique instrumental combination allowing for petroleomics hydrocarbon fingerprinting. Four flowback fluids from Marcellus shale gas wells in geographic proximity were analyzed for differentiating factors that could be exploited in environmental forensics investigations of shale gas impacts. Kendrick mass defect (KMD) plots of these flowback fluids illustrated well-to-well differences in heteroatomic substituted hydrocarbons, while GC × GC separations showed variance in cyclic hydrocarbons and polyaromatic hydrocarbons among the four wells. Additionally, generating plots that combine GC × GC separation with KMD established a novel data-rich visualization technique that further differentiated the samples.

6.
Proc Natl Acad Sci U S A ; 112(20): 6325-30, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941400

RESUMEN

High-volume hydraulic fracturing (HVHF) has revolutionized the oil and gas industry worldwide but has been accompanied by highly controversial incidents of reported water contamination. For example, groundwater contamination by stray natural gas and spillage of brine and other gas drilling-related fluids is known to occur. However, contamination of shallow potable aquifers by HVHF at depth has never been fully documented. We investigated a case where Marcellus Shale gas wells in Pennsylvania caused inundation of natural gas and foam in initially potable groundwater used by several households. With comprehensive 2D gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-TOFMS), an unresolved complex mixture of organic compounds was identified in the aquifer. Similar signatures were also observed in flowback from Marcellus Shale gas wells. A compound identified in flowback, 2-n-Butoxyethanol, was also positively identified in one of the foaming drinking water wells at nanogram-per-liter concentrations. The most likely explanation of the incident is that stray natural gas and drilling or HF compounds were driven ∼ 1-3 km along shallow to intermediate depth fractures to the aquifer used as a potable water source. Part of the problem may have been wastewaters from a pit leak reported at the nearest gas well pad-the only nearby pad where wells were hydraulically fractured before the contamination incident. If samples of drilling, pit, and HVHF fluids had been available, GCxGC-TOFMS might have fingerprinted the contamination source. Such evaluations would contribute significantly to better management practices as the shale gas industry expands worldwide.


Asunto(s)
Industria Procesadora y de Extracción/métodos , Agua Subterránea/química , Gas Natural/efectos adversos , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua/análisis , Cromatografía de Gases y Espectrometría de Masas , Fenómenos Geológicos , Pennsylvania
7.
Artículo en Inglés | MEDLINE | ID: mdl-28922086

RESUMEN

Polybrominated and mixed bromo/chloro dibenzo-p-dioxins and dibenzofurans (PXDD/Fs) are emerging environmental contaminants of concern. Thus far, an understanding of the toxicological behavior of these chemical species and their impact upon human health is incomplete. Here we utilized human and mouse hepatocellular carcinoma cell lines to examine the ability of differentially halogenated PXDD/F congeners to induce aryl hydrocarbon receptor (AHR)-mediated transcriptional activity. Dose-response experiments in reporter cell lines identified varied potencies among differentially halogenated PXDD/F isomers by comparison of EC50 values relative to the prototypical AHR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Brominated PXDD/F species displayed reduced capacity to activate the mouse AHR, compared to TCDD. Only BrCl3 dibenzo-p-dioxin was found to have a greater relative potency than TCDD to induce human AHR transcriptional activity. Human cells required ∼10-29-fold higher ligand concentrations to induce analogous AHR activity, relative to mouse cells. Decreased sensitivity of the human AHR to brominated dibenzofuran congeners directly corresponded to the number of bromine functional groups. Mixtures of these compounds exhibited an additive effect on AHR activation. The data also support the inclusion of mixed halogenated dibenzo-p-dioxins and dibenzofurans into routine environmental screening procedures as well as more thorough toxicological characterization of PXDD/Fs.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dibenzofuranos Policlorados/toxicidad , Hidrocarburos Bromados/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética , Activación Transcripcional/efectos de los fármacos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Ratones , Especificidad de la Especie
8.
Anal Chem ; 88(10): 5205-11, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27074061

RESUMEN

Brominated and mixed halogenated dibenzo-p-dioxins (PBDDs and PXDDs) may well be as toxic as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2378-TCDD), a compound reputed as one of the most toxic chemicals known to exist. However, studies on the occurrence of PXDDs have been hampered by a lack of authentic standards as well as separation techniques capable of resolving the enormous number of potential isomers. Electron ionization (EI) mass spectrometry based methods are of limited value due to the lack of isomer specific fragmentation. Negative ion atmospheric pressure chemical ionization (APCI(-)) of 2378-TCDD was described in this journal over 30 years ago. Under these conditions, the reaction between O2(-•) and 2378-TCDD results in structure diagnostic cleavages of the C-O bonds, which can distinguish TCDD isomers on the basis of Cl distribution between the two aromatic rings. In the present study, the analogous ether cleavages of PBDDs and PXDDs were studied using a gas chromatograph-quadrupole time-of-flight (GC-QTOF) mass spectrometer coupled using APCI. The results indicate comparable detection limits for the radical cations [M(•+)] and negative pseudomolecular ions [M-Cl+O](-): approximately 5 fg and 10 fg, respectively, for 2378-TCDD and 5-10 fg and 10-30 fg, respectively, for the 2,3,7,8-substituted PXDDs. Detection limits obtained by monitoring the ether cleavage products were somewhat higher (between 100 and 600 fg) but still acceptable for trace analysis of PXDDs. Such reactions may resolve coeluting isomers, which is crucial for the identification of PXDDs. The technique is demonstrated by differentiating PXDD isomer classes in a sample obtained from a major industrial fire that would not be feasible using EI or positive ion APCI(+).


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Dibenzodioxinas Policloradas/análisis , Presión Atmosférica , Límite de Detección , Estructura Molecular , Superóxidos/química
9.
Anal Chem ; 87(20): 10368-77, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26412694

RESUMEN

Residential and commercial fires generate a complex mixture of volatile, semivolatile, and nonvolatile compounds. This study focused on the semi/nonvolatile components of fire debris to better understand firefighter exposure risks. Using the enhanced sensitivity of gas chromatography coupled to atmospheric pressure ionization-tandem mass spectrometry (APGC-MS/MS), complex fire debris samples collected from simulation fires were analyzed for the presence of potentially toxic polyhalogenated dibenzo-p-dioxins and dibenzofurans (PXDD/Fs and PBDD/Fs). Extensive method development was performed to create multiple reaction monitoring (MRM) methods for a wide range of PXDD/Fs from dihalogenated through hexa-halogenated homologue groups. Higher halogenated compounds were not observed due to difficulty eluting them off the long column used for analysis. This methodology was able to identify both polyhalogenated (mixed bromo-/chloro- and polybromo-) dibenzo-p-dioxins and dibenzofurans in the simulated burn study samples collected, with the dibenzofuran species being the dominant compounds in the samples. Levels of these compounds were quantified as total homologue groups due to the limitations of commercial congener availability. Concentration ranges in household simulation debris were observed at 0.01-5.32 ppb (PXDFs) and 0.18-82.11 ppb (PBDFs). Concentration ranges in electronics simulation debris were observed at 0.10-175.26 ppb (PXDFs) and 0.33-9254.41 ppb (PBDFs). Samples taken from the particulate matter coating the firefighters' helmets contained some of the highest levels of dibenzofurans, ranging from 4.10 ppb to 2.35 ppm. The data suggest that firefighters and first responders at fire scenes are exposed to a complex mixture of potentially hundreds to thousands of different polyhalogenated dibenzo-p-dioxins and dibenzofurans that could negatively impact their health.


Asunto(s)
Atmósfera/química , Dioxinas/análisis , Incendios , Furanos/análisis , Cromatografía de Gases y Espectrometría de Masas , Presión
10.
Anal Chem ; 87(15): 7902-8, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26140516

RESUMEN

The goal of this study was to qualify gas chromatography coupled to atmospheric pressure ionization tandem mass spectrometry (APGC-MS/MS) as a reliable and valid technique for analysis of halogenated dioxins and furans that could be used in place of more traditional gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS) analysis. A direct comparison of the two instrumental techniques was performed. APGC-MS/MS system sensitivity was demonstrated to be on the single femtogram level. The APGC-MS/MS analysis also demonstrated method detection limits (MDLs) in both sediment and fish that were 2-18 times lower than those determined for the GC-HRMS. Inlet conditions were established to prevent issues with sample carry-over, due largely to the enhanced sensitivity of this technique. Additionally, this work utilized direct injection for sample introduction through the split/splittless inlet. Finally, quantification of both sediment and fish certified reference materials were directly compared between the APGC-MS/MS and GC-HRMS. The APGC-MS/MS performed similarly to, if not better than, the GC-HRMS instrument in the analysis of these samples. This data is intended to substantiate APGC-MS/MS as a comparable technique to GC-HRMS for the analysis of dioxins and furans.


Asunto(s)
Dioxinas/análisis , Monitoreo del Ambiente/métodos , Furanos/análisis , Cromatografía de Gases y Espectrometría de Masas , Contaminantes del Suelo/análisis , Espectrometría de Masas en Tándem , Presión Atmosférica , Halogenación , Sustancias Peligrosas/análisis , Estructura Molecular
11.
Environ Sci Technol ; 48(23): 13844-54, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25365627

RESUMEN

Assessing the toxicological significance of complex environmental mixtures is challenging due to the large number of unidentified contaminants. Nontargeted analytical techniques may serve to identify bioaccumulative contaminants within complex contaminant mixtures without the use of analytical standards. This study exposed three freshwater organisms (Lumbriculus variegatus, Hexagenia spp., and Pimephales promelas) to a highly contaminated soil collected from a recycling plant fire site. Biota extracts were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and mass defect filtering to identify bioaccumulative halogenated contaminants. Specific bioaccumulative isomers were identified by comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry (GCxGC-HRToF). Targeted analysis of mixed brominated/chlorinated dibenzo-p-dioxins and dibenzofurans (PXDD/PXDFs, X = Br and Cl) was performed by atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS). Relative sediment and biota instrument responses were used to estimate biota-sediment accumulation factors (BSAFs). Bioaccumulating contaminants varied among species and included polychlorinated naphthalenes (PCNs), polychlorinated dibenzofurans (PCDFs), chlorinated and mixed brominated/chlorinated anthracenes/phenanthrenes, and pyrenes/fluoranthenes (Cl-PAHs and X-PAHs, X = Br and Cl), as well as PXDD/PXDFs. Bioaccumulation potential among isomers also varied. This study demonstrates how complementary high-resolution mass spectrometry techniques identify persistent and bioaccumulative contaminants (and specific isomers) of environmental concern.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Oligoquetos/metabolismo , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos , Benzofuranos/análisis , Biota , Cyprinidae/metabolismo , Dibenzofuranos Policlorados , Dioxinas/análisis , Análisis de Fourier , Agua Dulce/análisis , Halogenación , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/farmacocinética
12.
J Am Soc Mass Spectrom ; 35(2): 275-284, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38239096

RESUMEN

Humans are exposed to differing levels of micro/nanoplastics (MNPs) through inhalation, but few studies have attempted to measure <1 µm MNPs in air, in part due to a paucity of analytical methods. We developed an approach to identify and quantify MNPs in indoor air using a novel pyrolysis gas chromatographic cyclic ion mobility mass spectrometer (pyr-GCxcIMS). Four common plastic types were targeted for identification, namely, (polystyrene (PS), polyethylene (PE), polypropylene (PP), and polymethyl methacrylate (PMMA). The method was applied to size-resolved particulate (56 nm to 18 µm) collected from two different indoor environments using a Micro-Orifice Uniform Deposit Impactors (MOUDI) model 110 cascade impactor. Comprehensive two-dimensional separation by GCxcIMS also enabled the retrospective analysis of other polymers and plastic additives. The mean concentrations of MNP particles with diameters of <10 µm and <2.5 µm in the laboratory were estimated to be 47 ± 5 and 27 ± 4 µg/m3, respectively. In the private residence, the estimated concentrations were 24 ± 3 and 16 ± 2 µg/m3. PS was the most abundant MNP type in both locations. Nontargeted screening revealed the presence of plastic additives, such as TDCPP (tris(1,3-dichloro-2-propyl)phosphate) whose abundance correlated with that of polyurethane (PU). This is consistent with their use as flame retardants in PU-based upholstered furniture and building insulation. This study provides evidence of indoor exposure to MNPs and underlines the need for further study of this route of exposure to MNPs and the plastic additives carried with them.

13.
Sci Total Environ ; 919: 170807, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38336068

RESUMEN

Produced water from conventional oil and gas wells (O&G PW) is beneficially reused as an inexpensive alternative to commercial dust suppressants which minimize inhalable particulate matter (PM10) from unpaved roads. The efficacy and environmental impacts of using O&G PW instead of commercial products have not been extensively investigated, although O&G PW has been used for dust suppression for decades and often has elevated concentrations of environmental pollutants. In this study, the effectiveness of O&G PW is compared to commercial products under variable humidity conditions by measuring total generated PM10 emissions from treated road aggregate discs. To measure environmental impacts, model roadbeds were treated with six O&G PW and commercial products then subjected to a simulated two-year, 24-h storm event. Generated runoff water was collected and characterized. In efficacy studies, O&G PW offered variable dust reduction (10-85 %) compared to rainwater controls under high humidity (50 %) conditions but performed similarly or worse than controls when humidity was low (20 %). Conversely, all but two commercial products reduced dust emissions by over 90 % regardless of humidity. In rainfall-runoff experiments, roads treated with O&G PWs and CaCl2 Brine generated runoff that was hypersaline, indicating that mobilization of soluble salts could contribute to freshwater salinization. Though most runoff concentrations were highest from roadbeds treated with CaCl2 Brine, runoff from roadbeds treated with O&G PW had the highest concentrations of combined radium (83.6 pCi/L), sodium (3560 mg/L), and suspended solids (5330 mg/L). High sodium concentrations likely dispersed clay particles, which increased road mass loss by 47.2 kg solids/km/storm event compared to rainwater controls. Roadbeds treated with CaCl2 Brine, which had low sodium concentrations, reduced solid road mass loss by 98.1 kg solids/km/storm event. Based on this study, O&G PW do not perform as well as commercial products and pose unique risks to environmental health.

14.
J Am Soc Mass Spectrom ; 35(4): 775-783, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38498916

RESUMEN

In cyclic ion mobility (cIMS), ions are permitted to travel multiple passes around the drift cell, increasing the distance traveled and the relative separation between ions. This study tests the hypothesis that multiple passes around the cell can also result in improved precision when measuring an ion's mobility and the collision cross section (TWCCS) derived therefrom. Experiments were performed with a diverse set of compounds, including 16 polycyclic aromatic hydrocarbons using gas chromatographic atmospheric pressure chemical ionization and a set of drug molecules by direct infusion electrospray ionization. The average periodic drift time, viz., the average time required for the ion to travel around the cIMS cell once, shifts dramatically, approaching part-per-million (ppm) precision as the number of passes increases to ∼100. Extrapolation of the precision of the CCS values with respect to the number of passes led to the prediction that the precision will reach 1000 ppm after 50 passes, 100 ppm after 100 passes, and <10 ppm after 150 passes. Experiments wherein the number of passes exceeded 100 produced TWCCS values having within-run precisions ranging between 15 and 117 ppm. The improved precision with an increasing number of passes may be a consequence of mitigating space-charge effects by allowing the ions to occupy a larger region of the cIMS cell. A method is proposed to enable practical measurements of TWCCS with ppm precision and is demonstrated to characterize an unknown drug mixture.

15.
Environ Pollut ; 334: 122184, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37453689

RESUMEN

Across the United States, road palliatives are applied to roads for maintenance operations that improve road safety. In the winter, solid rock salts and brine solutions are used to reduce the accumulation of snow and ice, while in the summer, dust suppressants are used to minimize fugitive dust emissions. Many of these products are chloride-based salts that have been linked to freshwater salinization, toxicity to aquatic organisms, and damage to infrastructure. To minimize these impacts, organic products have been gaining attention, though their widespread adoption has been limited due to their higher cost. In some states, using produced water from conventionally drilled oil and gas wells (OGPWs) on roads is permitted as a cost-effective alternative to commercial products, despite its typically elevated concentrations of heavy metals, radioactivity, and organic micropollutants. In this study, 17 road palliatives used for winter and summer road maintenance were collected and their chemical composition and potential human toxicity were characterized. Results from this study demonstrated that liquid brine solutions had elevated levels of trace metals (Zn, Cu, Sr, Li) that could pose risks to human and environmental health. The radium activity of liquid calcium chloride products was comparable to the activity of OGPWs and could be a significant source of radium to the environment. The organic fractions of evaluated OGPWs and chloride-based products posed little risk to human health. However, organic-based dust suppressants regulated toxicity pathways related to xenobiotic metabolism, lipid metabolism, endocrine disruption, and oxidative stress, indicating their use could lead to environmental harm and health risks to operators handing these products and residents living near treated roads.


Asunto(s)
Metales Pesados , Radio (Elemento) , Humanos , Sales (Química) , Cloruros , Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Metales Pesados/análisis , Polvo/análisis
16.
J Am Soc Mass Spectrom ; 34(4): 640-648, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36942790

RESUMEN

Ortho-substituted isomers of tricresyl phosphates (TCPs) and their toxic metabolites (e.g., CBDP: cresyl saligenin phosphate) can cause neurotoxic effects in humans. When TCP is introduced to an atmospheric pressure chemical ionization source using gas chromatography, radical cations M•+ are formed by charge exchange. The mass spectrum of an ortho-substituted isomer displays two intense peaks that are absent in the spectra of non-ortho-substituted isomers, leading us to propose structure-diagnostic ion-molecule reactions between ions M•+ and oxygen species present in the source. However, the mechanisms of these reactions have not yet been established. In this study, we propose a mechanism and provide support through computational and experimental analyses using density functional theory and cyclic ion mobility-mass spectrometry. The mechanism consists of a multistep reaction starting with the rearrangement of the molecular ion into a distonic isomer followed by an oxidation step and then decomposition into [CBDP-H]+. This proposal is consistent with the results obtained from a series of isotopically labeled analogues. Cyclic ion mobility experiments with a tri-o-cresyl phosphate standard reveal the presence of at least two hydrogen shift isomers of the product ion [CBDP-H]+ that are connected by a low-lying barrier. The selectivity of the ion-molecule reactions toward ortho-substituted cresyl TCP isomers provides us with an identification tool that can select potentially neurotoxic triaryl phosphate esters present in complex mixtures that are produced in large volume by industry.

17.
Environ Int ; 171: 107634, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459821

RESUMEN

Concerns regarding the persistence, bioaccumulation behaviour, and toxicity of perfluorooctanoic acid and perfluorooctane sulfonic acid have resulted in the creation of thousands of replacement perfluoroalkyl substances (PFAS). This study reports on the discovery of fluorotelomer ethoxylates (FTEO) in indoor dust (9/15 samples), and industrial effluents (14/37 samples) using gas chromatographic cyclic ion mobility mass spectrometry (GC-cIMS). By filtering the detected unknowns by mass and collision-cross section, a series of FTEO homologues were revealed with the formula F-(CF2)n(C2H4O)xH, where n = 6,8,10, and x = 4-12. The highest concentrations were observed in samples collected from healthcare facilities, consistent with the potential use of these compounds in anti-fog products, sprays used to prevent condensation on eyeglasses. FTEOs were also detected in c. 40 % of industrial effluent samples, with the highest concentrations in electroplating facilities, manufacturers of cosmetics and personal care products, and linen cleaning services for healthcare and work uniforms. These results suggest that FTEOs may well be widespread pollutants that are more persistent than previously thought, underlining the need for further study of their occurrence and potential impact to human health and the environment.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Humanos , Aguas Residuales , Polvo/análisis , Fluorocarburos/análisis , Contaminantes Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas
18.
Sci Total Environ ; 806(Pt 2): 150378, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600210

RESUMEN

Smallmouth bass in the Susquehanna River Basin, Chesapeake Bay Watershed, USA, have been exhibiting clinical signs of disease and reproductive endocrine disruption (e.g., intersex, male plasma vitellogenin) for over fifteen years. Previous histological and targeted chemical analyses have identified infectious agents and pollutants in fish tissues including organic contaminants, mercury, and perfluorinated compounds, but a common causative link for the observed signs of disease across this widespread area has not been determined. This study examines 146 young-of-year smallmouth bass collected from 14 sampling sites in the Susquehanna River Basin, Pennsylvania, USA with varying levels of disease prevalence. Whole fish were extracted by a recently developed modification to the quick, easy, cheap, effective, rugged, and safe extraction method and analyzed by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. A targeted analysis was conducted to identify the presence and quantity of 127 known contaminants, including polychlorinated biphenyls, brominated diphenyl ethers, organochlorinated pesticides, and pharmaceutical and personal care products. A non-targeted analysis was conducted on the same data set to identify analytes of interest not included on routine target compound lists. Chromatographic alignment through Statistical Compare (ChromaTOF GC) was followed by Fisher ratio and principal component analysis to reduce the data set from thousands of peaks per sample to a final data set of 65 analytes of interest. Comparisons of these 65 compounds between Normal (no observed health anomalies) and Lesioned (observed health anomaly at time of collection) fish revealed increased levels of three chemical families in Lesioned fish including esters, ketones, and nitrogen containing compounds.


Asunto(s)
Lubina , Contaminantes Químicos del Agua , Animales , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Espectrometría de Masas , Ríos , Contaminantes Químicos del Agua/análisis
19.
Talanta ; 221: 121481, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076092

RESUMEN

Liquid-liquid extraction (LLE) and stir bar sorptive extraction (SBSE) are extraction methods used for the analysis of contaminants in aqueous samples. In this study, both LLE and SBSE were compared for the extraction of priority pollutants and contaminants of emerging concern (CECs) in wastewater influent and effluent samples, for analysis with comprehensive two-dimensional gas chromatography with time of flight mass spectrometry (GC × GC-TOFMS). The methods were compared for their extraction efficiency of a broad range of compounds, matrix effects, accurate and reliable quantification of targets, and sensitivity. The target analytes studied were semi-volatile organic compounds (SVOC) including polycyclic aromatic hydrocarbons, phenols, phthalate esters, anilines, ethers, aromatic nitro compounds, and nitrosamines. LLE allowed for a higher number of target analytes to be extracted with over 70% recovery and quantified more targets in the influent samples. Matrix interference effects had a negative impact on the recovery of non-polar contaminants, such as polycyclic aromatic hydrocarbons (PAHs), in the influent water samples especially with SBSE. In SBSE, 24 target analytes demonstrated significant matrix interference leading to poor analyte recovery and 13 analytes were negatively affected in the same way in LLE. Generally, polar compounds also demonstrated poor extraction with SBSE in both effluent and influent water samples. However, SBSE effluent chromatograms contained about three times as many total analytes as compared with LLE, suggesting that SBSE is more sensitive for trace contaminants in effluent samples. Based on this research, LLE is recommended for studies seeking to quantify a broad range of target analytes in complex matrices, like wastewater influent. SBSE is an appropriate method for the non-target and survey analysis of trace contaminants in less complex water samples.

20.
Chemosphere ; 281: 130735, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34289640

RESUMEN

In many parts of the world, clean water has become increasingly scarce. Irrigation of agricultural land with treated wastewater is commonly used in response to water shortages but there is concern about the environmental fate and transport of contaminants present in the irrigation wastewater. This study aimed to examine the presence of wastewater sourced contaminants in soil and field grown corn (Zea mays) crops spray irrigated with treated wastewater. Soil, corn grain, leaves, and roots were sampled and tested from a long-term wastewater irrigation site as well as a non-irrigated control site in close geographic proximity. Samples were analyzed using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC × GC-TOFMS) and both targeted and non-targeted analyses were conducted to determine chemical differences between the wastewater irrigated and control samples. Target compounds detected and quantified in the samples include herbicides, phthalates, and polycyclic aromatic hydrocarbons. Non-targeted analysis showed chemical differences between each the wastewater irrigated and control samples. Furthermore, new chloro-dimethyl-benzotriazole compounds, which are suspected to be transformation products created by the chlorine disinfection process of the wastewater treatment plant, were tentatively identified in the wastewater effluent. Twenty of these new benzotriazoles were detected and semi-quantified in the wastewater irrigated soil samples at a maximum concentration of 472 ng/g. Eight of the most abundant benzotriazoles were also detected in the corn roots at concentrations up to 56 ng/g.


Asunto(s)
Contaminantes del Suelo , Aguas Residuales , Riego Agrícola , Productos Agrícolas , Suelo , Contaminantes del Suelo/análisis , Aguas Residuales/análisis , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA