Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203851

RESUMEN

The present study explores an environmentally friendly green approach to obtain cerium oxide nanoparticles via a biomediated route using Mellisa officinalis and Hypericum perforatum plant extracts as reducing agents. The as-prepared nanoparticles were studied for their structural and morphological characteristics using XRD diffractometry, scanning electron microscopy, Raman, fluorescence and electronic absorption spectra, and X-ray photoelectron spectroscopy (XPS). The XRD pattern has shown the centered fluorite crystal structure of cerium oxide nanoparticles with average crystallite size below 10 nm. These observations were in agreement with the STEM data. The cubic fluorite structure of the cerium oxide nanoparticles was confirmed by the vibrational mode around 462 cm-1 due to the Ce-08 unit. The optical band gap was estimated from UV-Vis reflectance spectra, which was found to decrease from 3.24 eV to 2.98 eV. A higher specific area was determined for the sample using M. officinalis aqueous extract. The EDX data indicated that only cerium and oxygen are present in the green synthesized nanoparticles.


Asunto(s)
Cerio , Nanopartículas , Extractos Vegetales , Microscopía Electrónica de Rastreo , Aceites de Plantas
2.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835080

RESUMEN

The bioactivity of the versatile biodegradable biopolymer poly(lactic acid) (PLA) can be obtained by combining it with natural or synthetic compounds. This paper deals with the preparation of bioactive formulations involving the melt processing of PLA loaded with a medicinal plant (sage) and an edible oil (coconut oil), together with an organomodifed montmorillonite nanoclay, and an assessment of the resulting structural, surface, morphological, mechanical, and biological properties of the biocomposites. By modulating the components, the prepared biocomposites show flexibility, both antioxidant and antimicrobial activity, as well as a high degree of cytocompatibility, being capable to induce the cell adherence and proliferation on their surface. Overall, the obtained results suggest that the developed PLA-based biocomposites could potentially be used as bioactive materials in medical applications.


Asunto(s)
Ácido Láctico , Polímeros , Polímeros/química , Aceite de Coco , Ácido Láctico/química , Poliésteres/química
3.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240263

RESUMEN

Cerium oxide nanoparticles were obtained using aqueous extracts of Chelidonium majus and Viscum album. X-ray diffractometry analysis confirmed the crystalline structure of the synthesized cerium oxide nanoparticles calcined at 600 °C. Scanning electron microscopy, UV-Vis reflectance and Raman spectroscopy, XPS, and fluorescence studies were utilized to interpret the morphological and optical properties of these nanoparticles. The STEM images revealed the spherical shape of the nanoparticles and that they were predominantly uniform in size. The optical band gap of our cerium nanoparticles was determined to be 3.3 and 3.0 eV from reflectance measurements using the Tauc plots. The nanoparticle sizes evaluated from the Raman band at 464 cm-1 due to the F2g mode of the cubic fluorite structure of cerium oxide are close to those determined from the XRD and STEM data. The fluorescence results showed emission bands at 425, 446, 467, and 480 nm. The electronic absorption spectra have exhibited an absorption band around 325 nm. The antioxidant potential of the cerium oxide nanoparticles was estimated by DPPH scavenging assay.


Asunto(s)
Cerio , Nanopartículas , Extractos Vegetales/química , Difracción de Rayos X , Nanopartículas/química , Cerio/química
4.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563112

RESUMEN

Starting from the bactericidal properties of functionalized polysulfone (PSFQ) and due to its excellent biocompatibility, biodegradability, and performance in various field, cellulose acetate phthalate (CAP) and polyvinyl alcohol (PVA), as well as their blends (PSFQ/CAP and PSFQ/PVA), have been tested to evaluate their applicative potential in the biomedical field. In this context, because the polymer processing starts from the solution phase, in the first step, the rheological properties were followed in order to assess and control the structural parameters. The surface chemistry analysis, surface properties, and antimicrobial activity of the obtained materials were investigated in order to understand the relationship between the polymers' structure-surface properties and organization form of materials (fibers and/or films), as important indicators for their future applications. Using the appropriate organization form of the polymers, the surface morphology and performance, including wettability and water permeation, were improved and controlled-these being the desired and needed properties for applications in the biomedical field. Additionally, after antimicrobial activity testing against different bacteria strains, the control of the inhibition mechanism for the analyzed microorganisms was highlighted, making it possible to choose the most efficient polymers/blends and, consequently, the efficiency as biomaterials in targeted applications.


Asunto(s)
Polímeros , Alcohol Polivinílico , Antibacterianos/química , Antibacterianos/farmacología , Polímeros/química , Alcohol Polivinílico/química , Sulfonas/farmacología
5.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887303

RESUMEN

Present research was directed towards the development of new high-performance and cost-effective polysulfone membranes (PSFQ) by introducing ionic liquids (ILs-Cyphos 101 IL and Aliquat 336) into their matrix. Variation of ILs was performed with the aim to find the one that brings new properties and improves the functionality and selectivity of PSFQ membranes in ultrafiltration processes. Based on the obtained results of the rheological study, we established the compatibility of compounds and optimal content of the used ILs, namely 3 wt% and 15 wt% Cyphos 101 IL and compositions varying between 3 and 15 wt % Aliquat 336. Results indicated that the ILs acted as plasticizers when they were added to the system, a helpful aspect in processing membranes used in water decontamination. The efficiency and performance of the membranes were evaluated by their use in the treatment of diclofenac (DCF)-containing waters. Membranes obtained from PSFQ/Aliquat 336 solution containing 15 wt% IL exhibited a 97% removal degree of DCF in the treatment process of 50 mL solution containing 3 mg/L DCF. The separation efficiency was kept constant for four filtration/cleaning cycles. The results indicated an improvement in membrane performance as the amount of IL in their structure increased, which confirms the potential for application in water treatment processes.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Membranas , Membranas Artificiales
6.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430362

RESUMEN

Dielectric, magnetic and Raman measurements of cerium oxide nanoparticles obtained by the precipitation method are discussed. Morphological study was performed by scanning electron microscopy, confirming the formation of nanoparticles of 5-27 nm. The Raman spectra exhibited a strong band around 465 cm-1, corresponding to the symmetrical stretching mode of the Ce-O8 vibrational unit. The nature of the room temperature ferromagnetism of cerium oxide nanoparticles was analyzed, taking into account the oxygen defects at the surface or interface of the nanoparticles. The evolution of dielectric constant, ε', and dielectric loss, ε″ was studied as a function of frequency at different temperatures. Additionally, the variation of the electric conductivity versus temperature was investigated. Finally, complex impedance study of the cerium oxide nanoparticles was performed.


Asunto(s)
Cerio , Nanopartículas , Antioxidantes , Conductividad Eléctrica
7.
Molecules ; 26(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34834067

RESUMEN

Curcumin (CCM) is a natural hydrophobic polyphenol known for its numerous applications in the food industry as a colorant or jelly stabilizer, and in the pharmaceutical industry due to its anti-inflammatory, antibacterial, antioxidant, anti-cancer, and anti-Alzheimer properties. However, the large application of CCM is limited by its poor solubility in water and low stability. To enhance the bioavailability of CCM, and to protect it against the external degradation agents, a novel strategy, which consists in the preparation of semi-interpenetrating polymer networks, (s-IPNs) based on poly(N,N-dimethylaminoethyl methacrylate) entrapped in poly(acrylamide) networks, by a cryogelation technique, was developed in this work. All s-IPN cryogels were characterized by SEM, EDX, FTIR, and swelling at equilibrium as a function of pH. Functionalization of semi-IPN cryogel with monochlorotriazinyl-ß-cyclodextrin (MCT-ß-CD) led to IPN cryogel. The release profile of CCM from the composite cryogels was investigated at 37 °C, in pH 3. It was found that the cumulative release increased with the increase of the carrier hydrophobicity, as a result of increasing the cross-linking degree, the content and the molar mass of PDMAEMA. Fitting Higuchi, Korsmeyer-Peppas, and first order kinetic models on the CCM release profiles indicated the diffusion as the main driving force of drug release from the composite cryogels.


Asunto(s)
Resinas Acrílicas/química , Criogeles/química , Curcumina/administración & dosificación , Metacrilatos/química , Nylons/química , beta-Ciclodextrinas/química , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Curcumina/química , Portadores de Fármacos/química , Liberación de Fármacos , Aditivos Alimentarios/administración & dosificación , Aditivos Alimentarios/química
8.
Molecules ; 26(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443480

RESUMEN

Within this study, new materials were synthesized and characterized based on polysiloxane modified with different ratios of N-acetyl-l-cysteine (NAC) and crosslinked via UV-assisted thiol-ene addition, in order to obtain efficient membranes able to resist bacterial adherence and biofilm formation. These membranes were subjected to in vitro testing for microbial adherence against S. pneumoniae using standardized tests. WISTAR rats were implanted for 4 weeks with crosslinked siloxane samples without and with NAC. A set of physical characterization methods was employed to assess the chemical structure and morphological aspects of the new synthetized materials before and after contact with the microbiological medium.


Asunto(s)
Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Implantes Cocleares/microbiología , Otitis/tratamiento farmacológico , Polímeros/química , Siloxanos/química , Acetilcisteína/química , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/uso terapéutico , Implantes Cocleares/efectos adversos , Polímeros/farmacología , Polímeros/uso terapéutico , Ratas Wistar , Siloxanos/farmacología , Siloxanos/uso terapéutico , Streptococcus pneumoniae/efectos de los fármacos , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
9.
Molecules ; 26(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429943

RESUMEN

Psoriasis is a chronic inflammatory disease associated with immune system dysfunction that can affect nails, with a negative impact on patient life quality. Usually, nail psoriasis is associated with skin psoriasis and is therefore relatively simple to diagnose. However, up to 10% of nail psoriasis occurs isolated and may be difficult to diagnose by means of current methods (nail biopsy, dermoscopy, video dermoscopy, capillaroscopy, ultrasound of the nails, etc.). Since the nail is a complex biological tissue, mainly composes of hard α-keratins, the structural and morphological techniques can be used to analyze the human fingernails. The aim of this study was to corroborate the information obtained using Raman spectroscopy with those obtained by scanning electron microscopy (SEM) and X-ray diffractometry and to assess the potential of these techniques as non-invasive dermatologic diagnostic tools and an alternative to current methods.


Asunto(s)
Uñas , Psoriasis , Femenino , Humanos , Masculino , Microscopía Electrónica de Rastreo , Uñas/metabolismo , Uñas/ultraestructura , Psoriasis/metabolismo , Psoriasis/patología , Espectrometría Raman , Difracción de Rayos X
10.
Molecules ; 27(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35011449

RESUMEN

Silver nanoparticles synthesized using plant extracts as reducing and capping agents showed various biological activities. In the present study, colloidal silver nanoparticle solutions were produced from the aqueous extracts of Picea abies and Pinus nigra bark. The phenolic profile of bark extracts was analyzed by liquid chromatography coupled to mass spectrometry. The synthesis of silver nanoparticles was monitored using UV-Vis spectroscopy by measuring the Surface Plasmon Resonance band. Silver nanoparticles were characterized by attenuated total reflection Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, scanning electron microscopy, energy dispersive X-ray and transmission electron microscopy analyses. The antimicrobial and cytogenotoxic effects of silver nanoparticles were evaluated by disk diffusion and Allium cepa assays, respectively. Picea abies and Pinus nigra bark extract derived silver nanoparticles were spherical (mean hydrodynamic diameters of 78.48 and 77.66 nm, respectively) and well dispersed, having a narrow particle size distribution (polydispersity index values of 0.334 and 0.224, respectively) and good stability (zeta potential values of -10.8 and -14.6 mV, respectively). Silver nanoparticles showed stronger antibacterial, antifungal, and antimitotic effects than the bark extracts used for their synthesis. Silver nanoparticles obtained in the present study are promising candidates for the development of novel formulations with various therapeutic applications.


Asunto(s)
Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Nanopartículas del Metal/química , Corteza de la Planta/química , Extractos Vegetales/química , Plata/química , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Fenómenos Químicos , Técnicas de Química Sintética , Tecnología Química Verde , Nanopartículas del Metal/ultraestructura , Fenoles/química , Análisis Espectral
11.
Molecules ; 24(12)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242689

RESUMEN

OBJECTIVES: Duodenoscopes have been widely used for both diagnostic and therapeutic endoscopic retrograde cholangiopancreatography (ERCP) procedures, but recently, numerous outbreaks of multidrug-resistant organisms (MDRO) infections have been reported which has led to extensive research for their possible causes. Consequently, the aim of this study is to search for possible duodenoscope surface damages that could provide an alternative and plausible source of infections. MATERIALS AND METHODS: In order to assess both outer and inner surfaces, a duodenoscope was dismantled and samples were taken from the outer resin polymer and from the air/water, elevator, and working (biopsy) channels that were characterized by FTIR, DSC, TGA, AFM, SEM techniques and the antimicrobial activity were tested. RESULTS: Alterations were noticed on both the coating and working channel polymers, with external alterations increasing progressively from the proximal sample to the distal sample near the tip of the scope. However, the results showed that the coating surface was still efficient against bacterial adhesion. Changes in surface texture and also morphological changes were shown. CONCLUSIONS: The study describes the impact of routine procedural use and reprocessing cycles on the duodenoscope, showing that these may possibly make it susceptible to bacterial contamination and MDRO biofilm formation due to difficult reprocessing of the altered surfaces.


Asunto(s)
Infección Hospitalaria/etiología , Duodenoscopios/efectos adversos , Biopelículas , Rastreo Diferencial de Calorimetría , Colangiopancreatografia Retrógrada Endoscópica/efectos adversos , Infección Hospitalaria/epidemiología , Desinfección , Duodenoscopios/microbiología , Microbiología Ambiental , Equipo Reutilizado , Humanos , Microscopía de Fuerza Atómica , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
12.
Chemistry ; 22(50): 18036-18044, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27805763

RESUMEN

The preparation of superparamagnetic composites obtained by CaCO3 mineralization from supersaturate aqueous solutions is presented. The preparation was conducted in the presence of oleic acid stabilized magnetite nanoparticles as a water-based magnetic fluid and insoluble templates as gel-like cross-linked polymeric beads. The presence of the magnetic particles in the composites provides a facile way for external manipulation using a permanent magnet, thus allowing the separation and extraction of magnetically modified materials. Two ion exchangers based on divinylbenzene/ethyl acrylate/acrylonitrile cross-linked copolymer-a cation ion exchanger (CIE) and an amphoteric ion exchanger (AIE)-were used, as well as different addition orders of magnetite and CaCO3 crystals growth precursors. The morphology of the composites was investigated by SEM, the polymorphs content by X-ray diffraction, and the thermal stability by thermogravimetric analysis. Polymer, CaCO3 , and magnetite in the composite particles were shown to be present by energy dispersive X-ray (EDX), XPS, and TEM. The sorption capacity for CuII ions was tested, as compared to samples prepared without magnetite.

13.
Chemistry ; 21(13): 5220-30, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25675892

RESUMEN

A new type of Cu(II) ion sorbents is presented. These are obtained by CaCO3 mineralization from supersaturated solutions on gel-like cross-linked polymeric beads as insoluble templates. A divinylbenzene-ethylacrylate-acrylonitrile cross-linked copolymer functionalized with weakly acidic, basic, or amphoteric functional groups has been used, as well as different initial inorganic concentrations and addition procedures for CaCO3 crystal growth. The morphology of the new composites was investigated by SEM and compared to that of the unmodified beads, and the polymorph content was established by X-ray diffraction. The beads, before and after CaCO3 mineralization, were tested as sorbents for Cu(II) ions. The newly formed patterns on the bead surface after Cu(II) sorption were observed by SEM, and the elemental distribution on the composites and the chemical structure of crystals after interaction with Cu(II) were investigated by EDAX elemental mapping and by FTIR-ATR spectroscopy, respectively. The sorption capacity increased significantly after CaCO3 crystals growth on the weak anionic bead surface (up to 1041.5 mg Cu(II) /g sample) compared to that of unmodified beads (491.5 mg Cu(II) /g sample).

14.
Org Biomol Chem ; 13(34): 9005-11, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26171592

RESUMEN

We introduce Dynamic Constitutional Frameworks (DCFs), macromolecular structures that efficiently bind and transfect double stranded DNA. DCFs are easily synthesizable adaptive 3D networks consisting of core connection centres reversibly linked via labile imine bonds both to linear polyethyleneglycol (PEG, ∼1500 Da) and to branched polyethyleneimine (bPEI, ∼800 Da). DCFs bind linear and plasmid DNA, forming particulate polyplexes of 40-200 nm in diameter. The polyplexes are stable during gel electrophoresis, well tolerated by cells in culture, and exhibit significant transfection activity. We show that an optimal balance of PEG and bPEI components is important for building DCFs that are non-toxic and exhibit good cellular transfection activity. Our study demonstrates the versatility and effectiveness of DCFs as promising new vectors for DNA delivery.


Asunto(s)
ADN/química , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Polietilenglicoles/química , Polietileneimina/química , Supervivencia Celular , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Peso Molecular , Espectroscopía de Fotoelectrones , Plásmidos/administración & dosificación
15.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727353

RESUMEN

Polymer nanocomposite films based on poly(vinyl pyrrolidone) incorporated with different amounts of copper oxide (CuO) nanoparticles were prepared by the solution casting technique. The PVP/CuO nanocomposites were analyzed by X-ray diffractometry (XRD), scanning electron microscopy, UV-Visible absorption spectroscopy and dielectric spectroscopy. The XRD analysis showed that the monoclinic structure of cupric oxide was maintained in the PVP host matrix. The key optical parameters, such as optical energy gap Eg, Urbach energy EU, absorption coefficient and refractive index, were estimated based on the UV-Vis data. The optical characteristics of the nanocomposite films revealed that their transmittance and absorption were influenced by the addition of CuO nanoparticles in the PVP matrix. Incorporation of CuO nanoparticles into the PVP matrix led to a significant decrease in band gap energy and an increase in the refractive index. The dielectric and electrical behaviors of the PVP/CuO nanocomposites were analyzed over a frequency range between 10 Hz and 1 MHz. The effect of CuO loading on the dielectric parameters (dielectric constant and dielectric loss) of the metal oxide nanocomposites was also discussed.

16.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257039

RESUMEN

Polymers play a crucial role in multiple industries; however, surface modification is necessary for certain applications. Exposure to non-thermal plasma provides a viable and environmentally beneficial option. Fused deposition molding utilizes biodegradable polylactic acid, although it encounters constraints in biomedical applications as a result of inadequate mechanical characteristics. This study investigates the effects of atmospheric pressure plasma generated by a dielectric barrier discharge system using helium and/or argon on the modification of polylactic acid surfaces, changes in their wettability properties, and alterations in their chemical composition. The plasma source was ignited in either He or Ar and was tailored to fit the best operational conditions for polymer exposure. The results demonstrated the enhanced wettability of the polymer surface following plasma treatment (up to 40% in He and 20% in Ar), with a marginal variation observed among treatments utilizing different gases. The plasma treatments also caused changes in the surface topography, morphology, roughness, and hydrophilicity. Plasma exposure also resulted in observable modifications in the dielectric characteristics, phase transition, and structure. The experimental findings endorse the utilization of plasma technologies at normal air pressure for environmentally friendly processing of polymer materials, specifically for applications that necessitate enhanced adhesion and have carefully selected prerequisites.

17.
Int J Biol Macromol ; 262(Pt 1): 130034, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340942

RESUMEN

The multiple uses of cellulose nanofibrils (CNFs) originate from their availability from renewable resources, and are due to their physico-chemical properties, biodegradability and biocompatibility. At the same time, reducing sensitivity to humidity, increasing interfacial adhesion and hydrophobic modification of the CNF surface to diversify applications and improve operation, are current targets pursued. This study focuses on the preparation of a novel gel structure using cellulose nanofibrils (CNFs) and poly(ethylene brassylate-co-squaric acid) (PEBSA50/50), a bio-based copolymacrolactone. The primary goal is to achieve the gel with reduced sensitivity to humidity and enhanced hydrophobic behaviour. The new system was characterized in comparison to its constituent components using various techniques, such as Fourier transform infrared spectroscopy, thermal analysis, X-ray diffraction, and NIR - chemical imaging. Rheological tests demonstrated the formation of the CNF_PEBSA50/50 gel as a result of physical interactions between the two polymeric partners and revealed self-healing abilities for the prepared gels. Determination of the contact angle, surface free energy, as well as dynamic measurements of the vapour sorption of the CNF_PEBSA50/50 system, confirmed the achievement of the study's aim. Furthermore, the CNF_PEBSA50/50 network was utilized to encapsulate citric acid, resulting in the creation of a new bioactive composite with both antioxidant and antimicrobial activity.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Antioxidantes/farmacología , Polímeros , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras/química
18.
Polymers (Basel) ; 15(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050249

RESUMEN

The high incidence of osteochondral defects has increased the interest in the development of improved repairing alternatives, with tissue engineering being considered a promising approach. The hierarchical, complex structure of osteochondral tissue requires the design of a biomimetic multilayered scaffold. Here, a multilayered and multiphasic 3D macroporous structure was achieved at subzero temperature by the Michael addition reaction of amino functionalities of collagen with acryloyl groups of a bifunctionalized poly(ε-caprolactone). This green approach has been successfully applied to crosslink layers of different composition, both for their efficient sequential formation and connection. Polyethylenimine functionalized nano-hydroxyapatite (nHApLPEI) was added to the bottom layer. The resulting hybrid cryogels were characterized by morphology, equilibrium swelling ratios, compressive strength analysis, and MTS assay. They presented good stability, integrity, and biocompatibility. The results revealed that the properties of the prepared constructs may be tuned by varying the composition, number, and thickness of the layers. The Young modulus values were between 3.5 ± 0.02 and 10.5 ± 0.6 kPa for the component layers, while for the multilayered structures they were more than 7.3 ± 0.2 kPa. The equilibrium swelling ratio varied between 4.6 and 14.2, with a value of ~10.5 for the trilayered structure, correlated with the mean pore sizes (74-230 µm).

19.
Polymers (Basel) ; 15(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37447451

RESUMEN

Up to now, the use of TiO2 has been considered a promising advanced technology for organic pollutants removal from air or water, since it has high biological and chemical stability, high photoactivity, low toxicity, and low-cost production. However, there are issues to be addressed in enhancing TiO2 performance, and one of the current key issues is redesigning UV-active photocatalysts and making them active in the visible region of the electromagnetic spectrum. This way, solar light absorption will be insured, and thus, a more efficient photocatalyst could be obtained. For this reason, conjugated polymers and their derivatives are considered to act as photosensitizers, being able to shift the TiO2 activity from the UV to the visible region. Therefore, this study focuses on the synthesis of TiO2/conjugated polymer systems, which was accomplished by the deposition of poly-3,4-ethylene-dioxy-thiophene (PEDOT [-C6H4O2S-]n), a low-band semiconductor with an excellent stability due to its extending π-conjugated electron system, on titania nanoarchitecture. First of all, a TiO2 nanoarchitecture was synthesized by an ultrasound-assisted sol-gel method. Then, TiO2/PEDOT systems were obtained and characterized by using different techniques such as X-ray diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, UV-Vis diffuse reflectance, and N2 sorption measurements. The synthesized composites confirmed their mesoporosity and lower band gap values compared to bare titania, which clearly shows the ability to work as photocatalysts under visible-light activity. Further, we demonstrated that an organic pollutant, Congo Red dye, used as a model molecule could be photodegraded with the synthesized TiO2/PEDOT systems, with efficiencies of up to 95% in the case of TconvPEDOT under UV light and up to 99% for TconvPEDOT under visible-light irradiation, accomplishing in this way a successful synthesis of visible-light-activated titania photocatalyst.

20.
Polymers (Basel) ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771933

RESUMEN

This paper reports new physical hydrogels obtained by the freezing/thawing method. They include pullulan (PULL) and poly(vinyl alcohol) (PVA) as polymers, bovine serum albumin (BSA) as protein, and a tripeptide, reduced glutathione (GSH). In addition, a sample containing PULL/PVA and lysozyme was obtained in similar conditions. SEM analysis evidenced the formation of networks with porous structure. The average pore size was found to be between 15.7 µm and 24.5 µm. All samples exhibited viscoelastic behavior typical to networks, the hydrogel strength being influenced by the protein content. Infrared spectroscopy analysis revealed the presence of intermolecular hydrogen bonds and hydrophobic interactions (more pronounced for BSA content between 30% and 70%). The swelling kinetics investigated in buffer solution (pH = 7.4) at 37 °C evidenced a quasi-Fickian diffusion for all samples. The hydrogels were loaded with neomycin trisulfate salt hydrate (taken as a model drug), and the optimum formulations (samples containing 10-30% BSA or 2% lysozyme) proved a sustained drug release over 480 min in simulated physiological conditions. The experimental data were analyzed using different kinetic models in order to investigate the drug release mechanism. Among them, the semi-empirical Korsmeyer-Peppas and Peppas-Sahlin models were suitable to describe in vitro drug release mechanism of neomycin sulfate from the investigated hybrid hydrogels. The structural, viscoelastic, and swelling properties of PULL/PVA/protein hybrid hydrogels are influenced by their composition and preparation conditions, and they represent important factors for in vitro drug release behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA