Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Exp Physiol ; 106(9): 1886-1896, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34184351

RESUMEN

NEW FINDINGS: What is the topic of this review? The review takes a historical approach to examining where in the body it might be possible to identify the most common cause, or causes, of long-term hypertension. It gathers evidence from histology, human and animal physiology, and computational modelling. The burden of decades of controversy is noted. What advances does it highlight? The review highlights the distinctive pathology of the afferent renal circulation and what its consequences are for the widespread view that essential hypertension is caused by elevated peripheral vascular resistance. ABSTRACT: The widely promulgated notion that long-term elevation in mean arterial blood pressure (MAP) can be caused by raised peripheral vascular resistance remains a subject of vigorous debate. According to the 1967 mathematical model of Guyton and Coleman, such a causal relationship is impossible, kidney function being the determining factor. We explore this altercation starting with Sir George Johnson's 19th-century renal vascular histological observations in patients with Bright's disease. We note the striking physiological measurements in hypertensives by Gómez and Bolomey in the 1950s, moving on to the mathematical modelling of the circulation from the 1960s up to the ∼100-parameter computer models of the present day. Confusion has been generated by the fact that peripheral resistance is raised in hypertension in close proportion to MAP whilst cardiac output often stays normal, an apparent autoregulation, the mechanism of which is poorly understood. All models allowing for the circulation to be an open system show that isolated changes in peripheral resistance cannot lead to long-term hypertension, but models fail so frequently to account for results from experiments such as salt loading that their credibility with regard to this key finding is compromised. Laboratory animal models of adrenergic renal actions resonate with a contemporary emphasis on the sympathetic nerve supply to the kidney as contributing to the characteristically markedly elevated renal afferent resistance that appears to be the most common cause of hypertension. Remarkably, there remains no account of the way in which the fixed structural changes in vessels observed by Johnson relate to this sympathetic overactivity, which can itself be modified by drugs in the medium term. In this account, we seek to locate the crime scene and identify a smoking gun.


Asunto(s)
Hipertensión , Animales , Presión Arterial , Presión Sanguínea , Humanos , Riñón , Cloruro de Sodio Dietético , Resistencia Vascular
2.
Exp Physiol ; 106(3): 726-735, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369804

RESUMEN

NEW FINDINGS: What is the central question of this study? What is the role of dorsal anterior cingulate cortex (ACC) in respiration control in humans? What is the main finding and its importance? Direct evidence is provided for a role of the ACC in respiratory control in humans. The neurophysiological responses in dorsal ACC to different breathing tasks varied and were different between left and right ACC. ABSTRACT: The role of subcortical structures and cerebral cortex in the maintenance of respiratory homeostasis in humans remains poorly understood. Emerging evidence suggests an important role of the anterior cingulate cortex (ACC) in respiratory control. In this study, local field potentials (LFPs) from dorsal ACC were recorded in humans through implanted deep brain electrodes during several breathing activities, including voluntary activities of breath-holding and deep breathing, and involuntary activities of inspiration of varying concentrations of carbon dioxide (1%, 3%, 5% and 7%). We found that the breath-holding task induced significant unilateral left-sided ACC changes in LFP power, including an increased activity in lower frequency bands (3-5 Hz) and decreased activity in higher frequency bands (12-26 Hz). The respiratory task involving reflex increase in ventilation due to hypercapnia (raised inspired CO2 ) was associated with bilateral changes in activity of the ACC (again with increased activity in lower frequency bands and reduced activity in higher frequency bands). The voluntary breathing task with associated hypocapnia (deep breathing) induced bilateral changes in activity within low frequency bands. Furthermore, probabilistic diffusion tractography analysis showed left-sided connection of the ACC with the insula and frontal operculum, and bilateral connections within subsections of the cingulate gyrus and the thalamus. This electrophysiological analysis provides direct evidence for a role of the ACC in respiratory control in humans.


Asunto(s)
Giro del Cíngulo , Hipercapnia , Contencion de la Respiración , Corteza Cerebral , Giro del Cíngulo/fisiología , Humanos , Imagen por Resonancia Magnética , Respiración
3.
J Physiol ; 594(5): 1197-213, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25907672

RESUMEN

Pulmonary ventilation and pulmonary arterial pressure both rise progressively during the first few hours of human acclimatization to hypoxia. These responses are highly variable between individuals, but the origin of this variability is unknown. Here, we sought to determine whether the variabilities between different measures of response to sustained hypoxia were related, which would suggest a common source of variability. Eighty volunteers individually underwent an 8-h isocapnic exposure to hypoxia (end-tidal P(O2)=55 Torr) in a purpose-built chamber. Measurements of ventilation and pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography were made during the exposure. Before and after the exposure, measurements were made of the ventilatory sensitivities to acute isocapnic hypoxia (G(pO2)) and hyperoxic hypercapnia, the latter divided into peripheral (G(pCO2)) and central (G(cCO2)) components. Substantial acclimatization was observed in both ventilation and PASP, the latter being 40% greater in women than men. No correlation was found between the magnitudes of pulmonary ventilatory and pulmonary vascular responses. For G(pO2), G(pCO2) and G(cC O2), but not the sensitivity of PASP to acute hypoxia, the magnitude of the increase during acclimatization was proportional to the pre-acclimatization value. Additionally, the change in G(pO2) during acclimatization to hypoxia correlated well with most other measures of ventilatory acclimatization. Of the initial measurements prior to sustained hypoxia, only G(pCO2) predicted the subsequent rise in ventilation and change in G(pO2) during acclimatization. We conclude that the magnitudes of the ventilatory and pulmonary vascular responses to sustained hypoxia are predominantly determined by different factors and that the initial G(pCO2) is a modest predictor of ventilatory acclimatization.


Asunto(s)
Aclimatación , Altitud , Presión Sanguínea , Hipoxia/fisiopatología , Arteria Pulmonar/fisiología , Ventilación Pulmonar , Adolescente , Adulto , Dióxido de Carbono/metabolismo , Femenino , Humanos , Hipoxia/etiología , Masculino , Persona de Mediana Edad , Oxígeno/metabolismo
5.
Exp Physiol ; 100(10): 1187-98, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26260891

RESUMEN

NEW FINDINGS: What is the central question of this study? Pulmonary arterial pressure is higher in older than younger humans and predicts mortality. It is also increased by acute hypoxia, which causes constriction of the pulmonary vasculature. We asked whether this pulmonary vascular response to hypoxia is greater in older humans. What is the main finding and its importance? Using Doppler echocardiography in 12 younger (∼ 20 years old) and nine older men (∼ 55 years old) exposed to 20 min of moderate isocapnic hypoxia, we demonstrated that older men showed a significantly greater rise in pulmonary arterial pressure during alveolar hypoxia than younger men. Future studies should examine the pathophysiological importance of increased hypoxic pulmonary vasoconstriction with age. Resting pulmonary arterial pressure increases with age in humans. In the general population, higher values are associated with increased mortality, and in common cardiopulmonary diseases, such as congestive heart failure and chronic obstructive pulmonary disease, the presence of pulmonary arterial hypertension portends a worse outcome. Pulmonary arterial pressure increases during alveolar hypoxia, as a consequence of constriction in the pulmonary vasculature. We hypothesized that older men have more vigorous hypoxic pulmonary vasoconstriction than younger men. Twelve younger (20.5 ± 0.5 years old) and nine older men (55.8 ± 2.1 years old) were exposed for 20 min on different days to isocapnic hypoxia (end-tidal PO2 = 50 mmHg) and isocapnic euoxia (end-tidal PO2 = 100 mmHg); each was preceded (baseline) and followed by 5 min of isocapnic euoxia. Systolic pulmonary arterial pressure and cardiac output were measured continuously using Doppler echocardiography. Systolic pulmonary arterial pressure was greater during baseline euoxic measurements in older participants (27.8 ± 0.8 versus 24.1 ± 0.7 mmHg, P = 0.001) and also increased more during hypoxia in older participants (15.2 ± 1.3 versus 9.6 ± 0.9 mmHg, P = 0.011). Cardiac output did not differ between the two groups during baseline measurements (P = 0.60) or hypoxia (P = 0.49). All data are means ± SEM. The increased magnitude of hypoxic pulmonary vasoconstriction demonstrated with age has implications for individuals wishing to ascend to high altitude or travel by air, for those suffering from conditions in which global alveolar hypoxia is a feature and for patients requiring general anaesthesia.


Asunto(s)
Hemodinámica , Hipoxia/fisiopatología , Arteria Pulmonar/fisiopatología , Enfermedad Aguda , Factores de Edad , Presión Arterial , Biomarcadores/sangre , Ecocardiografía Doppler , Humanos , Hipoxia/sangre , Hipoxia/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Oxihemoglobinas/metabolismo , Arteria Pulmonar/diagnóstico por imagen , Circulación Pulmonar , Ventilación Pulmonar , Factores Sexuales , Factores de Tiempo , Vasoconstricción , Adulto Joven
6.
Blood ; 119(3): 857-60, 2012 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-22130801

RESUMEN

Enhanced erythropoietic drive and iron deficiency both influence iron homeostasis through the suppression of the iron regulatory hormone hepcidin. Hypoxia also suppresses hepcidin through a mechanism that is unknown. We measured iron indices and plasma hepcidin levels in healthy volunteers during a 7-day sojourn to high altitude (4340 m above sea level), with and without prior intravenous iron loading. Without prior iron loading, a rapid reduction in plasma hepcidin was observed that was almost complete by the second day at altitude. This occurred before any index of iron availability had changed. Prior iron loading delayed the decrease in hepcidin until after the transferrin saturation, but not the ferritin concentration, had normalized. We conclude that hepcidin suppression by the hypoxia of high altitude is not driven by a reduction in iron stores.


Asunto(s)
Altitud , Péptidos Catiónicos Antimicrobianos/metabolismo , Regulación de la Expresión Génica , Hipoxia/metabolismo , Trastornos del Metabolismo del Hierro/metabolismo , Hierro/metabolismo , Adulto , Estudios de Casos y Controles , Eritropoyesis/genética , Eritropoyesis/fisiología , Eritropoyetina/metabolismo , Ferritinas/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Hepcidinas , Homeostasis , Humanos , Hipoxia/complicaciones , Trastornos del Metabolismo del Hierro/etiología , Hierro de la Dieta/metabolismo , Transferrina/genética , Transferrina/metabolismo , Talasemia beta/metabolismo
8.
Physiol Rep ; 12(4): e15944, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38366054

RESUMEN

Maximal exercise capacity is reduced at altitude or during hypoxia at sea level. It has been suggested that this might reflect increased right ventricular afterload due to hypoxic pulmonary vasoconstriction. We have shown previously that the pulmonary vascular sensitivity to hypoxia is enhanced by sustained isocapnic hypoxia, and inhibited by intravenous iron. In this study, we tested the hypothesis that elevated pulmonary artery pressure contributes to exercise limitation during acute hypoxia. Twelve healthy volunteers performed incremental exercise tests to exhaustion breathing 12% oxygen, before and after sustained (8-h) isocapnic hypoxia at sea level. Intravenous iron sucrose (n = 6) or saline placebo (n = 6) was administered immediately before the sustained hypoxia. In the placebo group, there was a substantial (12.6 ± 1.5 mmHg) rise in systolic pulmonary artery pressure (SPAP) during sustained hypoxia, but no associated fall in maximal exercise capacity breathing 12% oxygen. In the iron group, the rise in SPAP during sustained hypoxia was markedly reduced (3.4 ± 1.0 mmHg). There was a small rise in maximal exercise capacity following sustained hypoxia within the iron group, but no overall effect of iron, compared with saline. These results do not support the hypothesis that elevated SPAP inhibits maximal exercise capacity during acute hypoxia in healthy volunteers.


Asunto(s)
Oxígeno , Vasoconstricción , Humanos , Tolerancia al Ejercicio , Voluntarios Sanos , Arteria Pulmonar , Hipoxia , Altitud , Hierro/uso terapéutico
10.
Proc Natl Acad Sci U S A ; 107(28): 12722-7, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20616028

RESUMEN

The hypoxia-inducible factor (HIF) family of transcription factors directs a coordinated cellular response to hypoxia that includes the transcriptional regulation of a number of metabolic enzymes. Chuvash polycythemia (CP) is an autosomal recessive human disorder in which the regulatory degradation of HIF is impaired, resulting in elevated levels of HIF at normal oxygen tensions. Apart from the polycythemia, CP patients have marked abnormalities of cardiopulmonary function. No studies of integrated metabolic function have been reported. Here we describe the response of these patients to a series of metabolic stresses: exercise of a large muscle mass on a cycle ergometer, exercise of a small muscle mass (calf muscle) which allowed noninvasive in vivo assessments of muscle metabolism using (31)P magnetic resonance spectroscopy, and a standard meal tolerance test. During exercise, CP patients had early and marked phosphocreatine depletion and acidosis in skeletal muscle, greater accumulation of lactate in blood, and reduced maximum exercise capacities. Muscle biopsy specimens from CP patients showed elevated levels of transcript for pyruvate dehydrogenase kinase, phosphofructokinase, and muscle pyruvate kinase. In cell culture, a range of experimental manipulations have been used to study the effects of HIF on cellular metabolism. However, these approaches provide no potential to investigate integrated responses at the level of the whole organism. Although CP is relatively subtle disorder, our study now reveals a striking regulatory role for HIF on metabolism during exercise in humans. These findings have significant implications for the development of therapeutic approaches targeting the HIF pathway.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hipoxia/genética , Hipoxia/metabolismo , Factores de Transcripción/metabolismo , Adulto , Ejercicio Físico/fisiología , Femenino , Humanos , Lactatos/metabolismo , Ácido Láctico/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculos/metabolismo , Oxígeno/metabolismo , Policitemia/genética , Policitemia/metabolismo , Factores de Transcripción/genética
11.
Aviat Space Environ Med ; 84(1): 65-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23305002

RESUMEN

BACKGROUND: It has recently been shown that commercial air travel triggers hypoxic pulmonary vasoconstriction and modestly increases pulmonary artery pressure in healthy passengers. There is large interindividual variation in hypoxic pulmonary vasoreactivity, and some passengers may be at risk of developing flight-induced pulmonary hypertension, with potentially dangerous consequences. This study sought to determine whether it is possible for a susceptible passenger to develop pulmonary hypertension in response to a routine commercial flight. CASE REPORT: Using in-flight echocardiography, a passenger was studied during a 6-h commercial flight from London to Dubai. The passenger was generally well and frequently traveled by air, but had been diagnosed with Chuvash polycythemia, a genetic condition that is associated with increased hypoxic pulmonary vasoreactivity. Hematocrit had been normalized with regular venesection. During the flight, arterial oxygen saturation fell to a minimum of 96% and systolic pulmonary artery pressure (sPAP) rapidly increased into the pulmonary hypertensive range. The in-flight increase in sPAP was 50%, reaching a peak of 45 mmHg. DISCUSSION: This study has established that an asymptomatic but susceptible passenger can rapidly develop in-flight pulmonary hypertension even during a medium-haul flight. Prospective passengers at risk from such responses, including those who have cardiopulmonary disease or increased hypoxic pulmonary vasoreactivity, could benefit from preflight evaluation with a hypoxia altitude simulation test combined with simultaneous echocardiography (HAST-echo). The use of in-flight supplementary oxygen should be considered for susceptible individuals, including all patients diagnosed with Chuvash polycythemia.


Asunto(s)
Hipertensión Pulmonar/etiología , Policitemia/complicaciones , Viaje , Adulto , Medicina Aeroespacial , Altitud , Humanos , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Masculino , Oxígeno/administración & dosificación , Policitemia/fisiopatología
12.
FASEB J ; 25(6): 2001-11, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21389259

RESUMEN

The hypoxia-inducible factors (HIFs; isoforms HIF-1α, HIF-2α, HIF-3α) mediate many responses to hypoxia. Their regulation is principally by oxygen-dependent degradation, which is initiated by hydroxylation of specific proline residues followed by binding of von Hippel-Lindau (VHL) protein. Chuvash polycythemia is a disorder with elevated HIF. It arises through germline homozygosity for hypomorphic VHL alleles and has a phenotype of hematological, cardiopulmonary, and metabolic abnormalities. This study explores the phenotype of two other HIF pathway diseases: classic VHL disease and HIF-2α gain-of-function mutation. No cardiopulmonary abnormalities were detected in classic VHL disease. HIF-2α gain-of-function mutations were associated with pulmonary hypertension, increased cardiac output, increased heart rate, and increased pulmonary ventilation relative to metabolism. Comparison of the HIF-2α gain-of-function responses with data from studies of Chuvash polycythemia suggested that other aspects of the Chuvash phenotype were diminished or absent. In classic VHL disease, patients are germline heterozygous for mutations in VHL, and the present results suggest that a single wild-type allele for VHL is sufficient to maintain normal cardiopulmonary function. The HIF-2α gain-of-function phenotype may be more limited than the Chuvash phenotype either because HIF-1α is not elevated in the former condition, or because other HIF-independent functions of VHL are perturbed in Chuvash polycythemia.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dióxido de Carbono/sangre , Fenómenos Fisiológicos Cardiovasculares/genética , Regulación de la Expresión Génica/fisiología , Oxígeno/sangre , Enfermedad de von Hippel-Lindau/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/sangre , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Estudios de Casos y Controles , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Mutación , Enfermedad de von Hippel-Lindau/sangre , Enfermedad de von Hippel-Lindau/genética
14.
Aviat Space Environ Med ; 83(7): 673-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22779310

RESUMEN

BACKGROUND: It is not known whether the mild hypoxia experienced by passengers during commercial air travel triggers hypoxic pulmonary vasoconstriction and increases pulmonary artery pressure in flight. Insidious pulmonary hypertensive responses could endanger susceptible passengers who have cardiopulmonary disease or increased hypoxic pulmonary vascular sensitivity. Understanding these effects may improve pre-flight assessment of fitness-to-fly and reduce in-flight morbidity and mortality. METHODS: Eight healthy volunteers were studied during a scheduled commercial airline flight from London, UK, to Denver, CO. The aircraft was a Boeing 777 and the duration of the flight was 9 h. Systolic pulmonary artery pressure (sPAP) was assessed by portable Doppler echocardiography during the flight and over the following week in Denver, where the altitude (5280 ft/1610 m) simulates a commercial airliner environment. RESULTS: Cruising cabin altitude ranged between 5840 and 7170 ft (1780 to 2185 m), and mean arterial oxygen saturation was 95 +/- 0.6% during the flight. Mean sPAP increased significantly in flight by 6 +/- 1 mmHg to 33 +/- 1 mmHg, an increase of approximately 20%. After landing in Denver, sPAP was still 3 +/- 1 mmHg higher than baseline and remained elevated at 30 +/- 1 mmHg for a further 12 h. CONCLUSIONS: Pulmonary artery pressure increases during commercial air travel in healthy passengers, raising the possibility that hypoxic pulmonary hypertension could develop in susceptible individuals. A hypoxia altitude simulation test with simultaneous echocardiography ('HAST-echo') may be beneficial in assessing fitness to fly in vulnerable patients.


Asunto(s)
Aeronaves , Altitud , Hipertensión Pulmonar/fisiopatología , Hipoxia/fisiopatología , Arteria Pulmonar/fisiopatología , Adulto , Ecocardiografía Doppler , Femenino , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Hipoxia/diagnóstico por imagen , Masculino , Arteria Pulmonar/diagnóstico por imagen , Vasoconstricción/fisiología
15.
J Cardiothorac Surg ; 17(1): 157, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710500

RESUMEN

BACKGROUND: Iron deficiency has deleterious effects in patients with cardiopulmonary disease, independent of anemia. Low ferritin has been associated with increased mortality in patients undergoing cardiac surgery, but modern indices of iron deficiency need to be explored in this population. METHODS: We conducted a retrospective single-centre observational study of 250 adults in a UK academic tertiary hospital undergoing median sternotomy for non-emergent isolated aortic valve replacement. We characterised preoperative iron status using measurement of both plasma ferritin and soluble transferrin receptor (sTfR), and examined associations with clinical outcomes. RESULTS: Measurement of plasma sTfR gave a prevalence of iron deficiency of 22%. Patients with non-anemic iron deficiency had clinically significant prolongation of total hospital stay (mean increase 2.2 days; 95% CI: 0.5-3.9; P = 0.011) and stay within the cardiac intensive care unit (mean increase 1.3 days; 95% CI: 0.1-2.5; P = 0.039). There were no deaths. Defining iron deficiency as a plasma ferritin < 100 µg/L identified 60% of patients as iron deficient and did not predict length of stay. No significant associations with transfusion requirements were evident using either definition of iron deficiency. CONCLUSIONS: These findings indicate that when defined using sTfR rather than ferritin, non-anemic iron deficiency predicts prolonged hospitalisation following surgical aortic valve replacement. Further studies are required to clarify the role of contemporary laboratory indices in the identification of preoperative iron deficiency in patients undergoing cardiac surgery. An interventional study of intravenous iron targeted at preoperative non-anemic iron deficiency is warranted.


Asunto(s)
Anemia Ferropénica , Deficiencias de Hierro , Adulto , Anemia Ferropénica/epidemiología , Anemia Ferropénica/etiología , Válvula Aórtica/cirugía , Ferritinas , Humanos , Hierro , Tiempo de Internación , Receptores de Transferrina , Estudios Retrospectivos
16.
Sci Rep ; 12(1): 998, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046429

RESUMEN

Iron deficiency impairs skeletal muscle metabolism. The underlying mechanisms are incompletely characterised, but animal and human experiments suggest the involvement of signalling pathways co-dependent upon oxygen and iron availability, including the pathway associated with hypoxia-inducible factor (HIF). We performed a prospective, case-control, clinical physiology study to explore the effects of iron deficiency on human metabolism, using exercise as a stressor. Thirteen iron-deficient (ID) individuals and thirteen iron-replete (IR) control participants each underwent 31P-magnetic resonance spectroscopy of exercising calf muscle to investigate differences in oxidative phosphorylation, followed by whole-body cardiopulmonary exercise testing. Thereafter, individuals were given an intravenous (IV) infusion, randomised to either iron or saline, and the assessments repeated ~ 1 week later. Neither baseline iron status nor IV iron significantly influenced high-energy phosphate metabolism. During submaximal cardiopulmonary exercise, the rate of decline in blood lactate concentration was diminished in the ID group (P = 0.005). Intravenous iron corrected this abnormality. Furthermore, IV iron increased lactate threshold during maximal cardiopulmonary exercise by ~ 10%, regardless of baseline iron status. These findings demonstrate abnormal whole-body energy metabolism in iron-deficient but otherwise healthy humans. Iron deficiency promotes a more glycolytic phenotype without having a detectable effect on mitochondrial bioenergetics.


Asunto(s)
Metabolismo Energético/fisiología , Deficiencias de Hierro/metabolismo , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Administración Intravenosa , Adulto , Estudios de Casos y Controles , Ejercicio Físico/fisiología , Femenino , Humanos , Hierro/administración & dosificación , Ácido Láctico/sangre , Masculino , Estudios Prospectivos
19.
Anesthesiology ; 111(2): 287-92, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19568159

RESUMEN

BACKGROUND: In a patient whose airway is likely to become obstructed upon loss of consciousness, anesthesia may be induced using an inhaled vapor. If the airway occludes during such an inhalational induction, the speed of patient awakening is related to the rate at which anesthetic gas redistributes away from lung and brain to other body compartments. To determine whether redistribution occurs more rapidly with a more blood-soluble or a less blood-soluble agent, the authors used subanesthetic concentrations of halothane and sevoflurane to simulate inhalational induction and airway obstruction in eight healthy human volunteers. METHODS: Inhalational induction was simulated using stepwise increases in inspired halothane or sevoflurane concentration, sufficient to reach an end-tidal concentration of approximately 0.1 minimal alveolar concentration. Airway occlusion was then simulated by initiating a 90-s period of rebreathing from a 1-l bag. During rebreathing, end-tidal halothane or sevoflurane concentration was measured continuously by mass spectrometry, and a time constant for the decline in concentration was calculated using a monoexponential model. RESULTS: At the onset of rebreathing, end-tidal concentrations of halothane and sevoflurane were 0.10 +/- 0.03 and 0.11 +/- 0.03 minimal alveolar concentration, respectively (mean +/- SD; P > 0.1, Student t test). During rebreathing, the time constants for the decline in end-tidal halothane and sevoflurane concentration were 22 +/- 9 and 62 +/- 16 s, respectively (P < 0.0001). CONCLUSIONS: During simulated airway occlusion in healthy volunteers, the end-tidal concentration of halothane falls more rapidly than that of sevoflurane. Halothane may therefore lead to more rapid awakening, compared with sevoflurane, should the airway obstruct during an inhalational induction of anesthesia.


Asunto(s)
Obstrucción de las Vías Aéreas/metabolismo , Anestesia por Inhalación , Anestésicos por Inhalación/farmacocinética , Halotano/farmacocinética , Éteres Metílicos/farmacocinética , Adulto , Anestésicos por Inhalación/administración & dosificación , Femenino , Halotano/administración & dosificación , Humanos , Masculino , Espectrometría de Masas , Éteres Metílicos/administración & dosificación , Alveolos Pulmonares/metabolismo , Mecánica Respiratoria/fisiología , Sevoflurano
20.
JAMA ; 302(13): 1444-50, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19809026

RESUMEN

CONTEXT: Hypoxia is a major cause of pulmonary hypertension in respiratory disease and at high altitude. Recent work has established that the effect of hypoxia on pulmonary arterial pressure may depend on iron status, possibly acting through the transcription factor hypoxia-inducible factor, but the pathophysiological and clinical importance of this interaction is unknown. OBJECTIVE: To determine whether increasing or decreasing iron availability modifies altitude-induced hypoxic pulmonary hypertension. DESIGN, SETTING, AND PARTICIPANTS: Two randomized, double-blind, placebo-controlled protocols conducted in October-November 2008. In the first protocol, 22 healthy sea-level resident men (aged 19-60 years) were studied over 1 week of hypoxia at Cerro de Pasco, Peru (altitude 4340 m). In the second protocol, 11 high-altitude resident men (aged 30-59 years) diagnosed with chronic mountain sickness were studied over 1 month of hypoxia at Cerro de Pasco, Peru. INTERVENTION: In the first protocol, participants received intravenous infusions of Fe(III)-hydroxide sucrose (200 mg) or placebo on the third day of hypoxia. In the second protocol, patients underwent staged isovolemic venesection of 2 L of blood. Two weeks later, patients received intravenous infusions of Fe(III)-hydroxide sucrose (400 mg) or placebo, which were subsequently crossed over. MAIN OUTCOME MEASURE: Effect of varying iron availability on pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography. RESULTS: In the sea-level resident protocol, approximately 40% of the pulmonary hypertensive response to hypoxia was reversed by infusion of iron, which reduced PASP by 6 mm Hg (95% confidence interval [CI], 4-8 mm Hg), from 37 mm Hg (95% CI, 34-40 mm Hg) to 31 mm Hg (95% CI, 29-33 mm Hg; P = .01). In the chronic mountain sickness protocol, progressive iron deficiency induced by venesection was associated with an approximately 25% increase in PASP of 9 mm Hg (95% CI, 4-14 mm Hg), from 37 mm Hg (95% CI, 30-44 mm Hg) to 46 mm Hg (95% CI, 40-52 mm Hg; P = .003). During the subsequent crossover period, no acute effect of iron replacement on PASP was detected. CONCLUSION: Hypoxic pulmonary hypertension may be attenuated by iron supplementation and exacerbated by iron depletion. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00952302.


Asunto(s)
Mal de Altura/fisiopatología , Compuestos Férricos/farmacología , Hipertensión Pulmonar/fisiopatología , Deficiencias de Hierro , Adulto , Altitud , Mal de Altura/complicaciones , Presión Sanguínea , Estudios Cruzados , Método Doble Ciego , Ecocardiografía Doppler , Compuestos Férricos/administración & dosificación , Sacarato de Óxido Férrico , Ácido Glucárico , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/prevención & control , Hipoxia/fisiopatología , Masculino , Persona de Mediana Edad , Flebotomía , Arteria Pulmonar , Sístole , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA