Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-28674054

RESUMEN

Candida albicans is a major cause of fungal diseases in humans, and its resistance to available drugs is of concern. In an attempt to identify novel antifungal agents, we initiated a small-scale screening of a library of 199 natural plant compounds (i.e., natural products [NPs]). In vitro susceptibility profiling experiments identified 33 NPs with activity against C. albicans (MIC50s ≤ 32 µg/ml). Among the selected NPs, the sterol alkaloid tomatidine was further investigated. Tomatidine originates from the tomato (Solanum lycopersicum) and exhibited high levels of fungistatic activity against Candida species (MIC50s ≤ 1 µg/ml) but no cytotoxicity against mammalian cells. Genome-wide transcriptional analysis of tomatidine-treated C. albicans cells revealed a major alteration (upregulation) in the expression of ergosterol genes, suggesting that the ergosterol pathway is targeted by this NP. Consistent with this transcriptional response, analysis of the sterol content of tomatidine-treated cells showed not only inhibition of Erg6 (C-24 sterol methyltransferase) activity but also of Erg4 (C-24 sterol reductase) activity. A forward genetic approach in Saccharomyces cerevisiae coupled with whole-genome sequencing identified 2 nonsynonymous mutations in ERG6 (amino acids D249G and G132D) responsible for tomatidine resistance. Our results therefore unambiguously identified Erg6, a C-24 sterol methyltransferase absent in mammals, to be the main direct target of tomatidine. We tested the in vivo efficacy of tomatidine in a mouse model of C. albicans systemic infection. Treatment with a nanocrystal pharmacological formulation successfully decreased the fungal burden in infected kidneys compared to the fungal burden achieved by the use of placebo and thus confirmed the potential of tomatidine as a therapeutic agent.


Asunto(s)
Antifúngicos/farmacología , Productos Biológicos/farmacología , Candida albicans/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Línea Celular Tumoral , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Ergosterol/farmacología , Femenino , Fluconazol/farmacología , Genes Fúngicos/genética , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana/métodos , Saccharomyces cerevisiae/genética , Tomatina/análogos & derivados , Tomatina/farmacología
2.
J Nat Prod ; 79(2): 300-7, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26848627

RESUMEN

Chemical investigation of a dichloromethane extract of the aerial parts of Waltheria indica led to the isolation and characterization of five polyhydroxymethoxyflavonoids, namely, oxyanin A (1), vitexicarpin (3), chrysosplenol E (4), flindulatin (5), 5-hydroxy-3,7,4'-trimethoxyflavone (6), and six quinolone alkaloids, waltheriones M-Q (2, 7, 8, 10, 11) and 5(R)-vanessine (9). Among these, compounds 2, 7, 8, 10, and 11 have not yet been described in the literature. Their chemical structures were established by means of spectroscopic data interpretation including (1)H and (13)C, HSQC, HMBC, COSY, and NOESY NMR experiments and UV, IR, and HRESIMS. The absolute configurations of the compounds were established by ECD. The isolated constituents and 10 additional quinoline alkaloids previously isolated from the roots of the plant were evaluated for their in vitro antifungal activity against the human fungal pathogen Candida albicans, and 10 compounds (7, 9, 11-16, 18, 21) showed growth inhibitory activity on both planktonic cells and biofilms (MIC ≤ 32 µg/mL). Their spectrum of activity against other pathogenic Candida species and their cytotoxicity against human HeLa cells were also determined. In addition, the cytological effect of the antifungal isolated compounds on the ultrastructure of C. albicans was evaluated by transmission electron microscopy.


Asunto(s)
Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Malvaceae/química , Quinolinas/aislamiento & purificación , Quinolinas/farmacología , Alcaloides/química , Antifúngicos/química , Candida albicans/efectos de los fármacos , Flavonoides/química , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Estructura Molecular , Niger , Resonancia Magnética Nuclear Biomolecular , Componentes Aéreos de las Plantas/química , Raíces de Plantas/química , Quinolinas/química
3.
Proc Natl Acad Sci U S A ; 110(24): 9974-9, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716671

RESUMEN

Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/fisiología , Neuronas/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Western Blotting , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Electroencefalografía , Electromiografía , Expresión Génica , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos AKR , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Neuronas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sueño/genética , Privación de Sueño/genética , Privación de Sueño/fisiopatología , Especificidad de la Especie , Factores de Tiempo , Vigilia/genética
4.
J Nat Prod ; 78(12): 2994-3004, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26654828

RESUMEN

A dichloromethane extract of the roots from the Panamanian plant Swartzia simplex exhibited a strong antifungal activity in a bioautography assay against a genetically modified hypersusceptible strain of Candida albicans. At-line HPLC activity based profiling of the crude extract enabled a precise localization of the antifungal compounds, and dereplication by UHPLC-HRESIMS indicated the presence of potentially new metabolites. Transposition of the HPLC reversed-phase analytical conditions to medium-pressure liquid chromatography (MPLC) allowed an efficient isolation of the major constituents. Minor compounds of interest were isolated from the MPLC fractions using semipreparative HPLC. Using this strategy, 14 diterpenes (1-14) were isolated, with seven (5-10, 14) being new antifungal natural products. The new structures were elucidated using NMR spectroscopy and HRESIMS analysis. The absolute configurations of some of the compounds were elucidated by electronic circular dichroism spectroscopy. The antifungal properties of these compounds were evaluated as their minimum inhibitory concentrations in a dilution assay against both hypersusceptible and wild-type strains of C. albicans and by assessment of their antibiofilm activities. The potential cytological effects on the ultrastructure of C. albicans of the antifungal compounds isolated were evaluated on thin sections by transmission electron microscopy.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Candida albicans/efectos de los fármacos , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Fabaceae/química , Antifúngicos/química , Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Diterpenos/química , Humanos , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Panamá , Corteza de la Planta/química
5.
Sleep ; 33(9): 1147-57, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20857860

RESUMEN

STUDY OBJECTIVES: The sleep-deprivation-induced changes in delta power, an electroencephalographical correlate of sleep need, and brain transcriptome profiles have importantly contributed to current hypotheses on sleep function. Because sleep deprivation also induces stress, we here determined the contribution of the corticosterone component of the stress response to the electrophysiological and molecular markers of sleep need in mice. DESIGN: N/A SETTINGS: Mouse sleep facility. PARTICIPANTS: C57BL/6J, AKR/J, DBA/2J mice. INTERVENTIONS: Sleep deprivation, adrenalectomy (ADX). MEASUREMENTS AND RESULTS: Sleep deprivation elevated corticosterone levels in 3 inbred strains, but this increase was larger in DBA/2J mice; i.e., the strain for which the rebound in delta power after sleep deprivation failed to reach significance. Elimination of the sleep-deprivation-associated corticosterone surge through ADX in DBA/2J mice did not, however, rescue the delta power rebound but did greatly reduce the number of transcripts affected by sleep deprivation. Genes no longer affected by sleep deprivation cover pathways previously implicated in sleep homeostasis, such as lipid, cholesterol (e.g., Ldlr, Hmgcs1, Dhcr7, -24, Fkbp5), energy and carbohydrate metabolism (e.g., Eno3, G6pc3, Mpdu1, Ugdh, Man1b1), protein biosynthesis (e.g., Sgk1, Alad, Fads3, Eif2c2, -3, Mat2a), and some circadian genes (Per1, -3), whereas others, such as Homer1a, remained unchanged. Moreover, several microRNAs were affected both by sleep deprivation and ADX. CONCLUSIONS: Our findings indicate that corticosterone contributes to the sleep-deprivation-induced changes in brain transcriptome that have been attributed to wakefulness per se. The study identified 78 transcripts that respond to sleep loss independent of corticosterone and time of day, among which genes involved in neuroprotection prominently feature, pointing to a molecular pathway directly relevant for sleep function.


Asunto(s)
Glucocorticoides/fisiología , Homeostasis/fisiología , Privación de Sueño/etiología , Vigilia/fisiología , Adrenalectomía , Animales , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Corticosterona/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Genotipo , Masculino , Ratones , Ratones Endogámicos , ARN Mensajero/metabolismo , Privación de Sueño/metabolismo , Privación de Sueño/fisiopatología
6.
Proc Natl Acad Sci U S A ; 104(50): 20090-5, 2007 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-18077435

RESUMEN

Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep-wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.


Asunto(s)
Encéfalo/fisiología , Proteínas Portadoras/fisiología , Privación de Sueño/metabolismo , Sueño/fisiología , Animales , Proteínas Portadoras/genética , Predisposición Genética a la Enfermedad , Proteínas de Andamiaje Homer , Ratones , Ratones Endogámicos AKR , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , ARN Mensajero/metabolismo , Sueño/genética , Privación de Sueño/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-32185143

RESUMEN

Introduction: Fecal microbiota transplantation (FMT) is recommended as safe and effective treatment for recurrent Clostridioides difficile infections. Freezing the FMT preparation simplifies the process, allowing a single stool sample to be used for multiple receivers and over an extended period of time. We aimed to assess the effect of long-term frozen storage on bacterial taxonomic profiles of a stool suspension prepared for FMT. Methods: DNA was extracted from a stool suspension before freezing and sequentially during the 18-month storage period at -80°C. Two different protocols were used for DNA extraction. The first relied on a classical mechanical and chemical cell disruption to extract both intra- and extracellular DNA; the second included specific pre-treatments aimed at removing free DNA and DNA from human and damaged bacterial cells. Taxonomic profiling of bacterial communities was performed by sequencing of V3-V4 16S rRNA gene amplicons. Results: Microbiota profiles obtained by whole DNA extraction procedure remained relatively stable during frozen storage. When DNA extraction procedure included specific pre-treatments, microbiota similarity between fresh and frozen samples progressively decreased with longer frozen storage times; notably, the abundance of Bacteroidetes decreased in a storage duration-dependent manner. The abundance of Firmicutes, the main butyrate producers in the colon, were not much affected by frozen storage for up to 1 year. Conclusion: Our data show that metataxonomic analysis of frozen stool suspensions subjected to specific pre-treatments prior to DNA extractions might provide an interesting indication of bacterial resistance to stress conditions and thus of chances of survival in FMT recipients.


Asunto(s)
Bacterias/clasificación , Bacteroidetes/genética , Heces/microbiología , Firmicutes/genética , Microbiota , Bacterias/aislamiento & purificación , Bacteroidetes/aislamiento & purificación , Criopreservación/métodos , ADN Bacteriano/genética , Trasplante de Microbiota Fecal , Firmicutes/aislamiento & purificación , Humanos , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Manejo de Especímenes/métodos , Suspensiones , Factores de Tiempo
8.
Front Microbiol ; 8: 1478, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824601

RESUMEN

Candida albicans is a major fungal pathogen causing life-threatening diseases in immuno-compromised patients. The efficacy of current drugs to combat C. albicans infections is limited, as these infections have a 40-60% mortality rate. There is a real need for novel therapeutic approaches, but such advances require a detailed knowledge of C. albicans and its in vivo pathogenesis. Additionally, any novel antifungal drugs against C. albicans infections will need to be tested for their in vivo efficacy over time. Fungal pathogenesis and drug-mediated resolution studies can both be evaluated using non-invasive in vivo imaging technologies. In the work presented here, we used a codon-optimized firefly luciferase reporter system for detecting C. albicans in mice. We adapted the firefly luciferase in order to improve its maximum emission intensity in the red light range (600-700 nm) as well as to improve its thermostability in mice. All non-invasive in vivo imaging of experimental animals was performed with a multimodal imaging system able to detect luminescent reporters and capture both reflectance and X-ray images. The modified firefly luciferase expressed in C. albicans (Mut2) was found to significantly increase the sensitivity of bioluminescence imaging (BLI) in systemic infections as compared to unmodified luciferase (Mut0). The same modified bioluminescence reporter system was used in an oropharyngeal candidiasis model. In both animal models, fungal loads could be correlated to the intensity of emitted light. Antifungal treatment efficacies were also evaluated on the basis of BLI signal intensity. In conclusion, BLI with a red-shifted firefly luciferase was found to be a powerful tool for testing the fate of C. albicans in various mice infection models.

9.
Phytochemistry ; 105: 68-78, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24984572

RESUMEN

An efficient screening strategy for the identification of potentially interesting low-abundance antifungal natural products in crude extracts that combines both a sensitive bioautography assay and high performance liquid chromatography (HPLC) microfractionation was developed. This method relies on high performance thin layer chromatography (HPTLC) bioautography with a hypersusceptible engineered strain of Candida albicans (DSY2621) for bioactivity detection, followed by the evaluation of wild type strains in standard microdilution antifungal assays. Active extracts were microfractionated by HPLC in 96-well plates, and the fractions were subsequently submitted to the bioassay. This procedure enabled precise localisation of the antifungal compounds directly in the HPLC chromatograms of the crude extracts. HPLC-PDA-mass spectrometry (MS) data obtained in parallel to the HPLC antifungal profiles provided a first chemical screening about the bioactive constituents. Transposition of the HPLC analytical conditions to medium-pressure liquid chromatography (MPLC) allowed the efficient isolation of the active constituents in mg amounts for structure confirmation and more extensive characterisation of their biological activities. The antifungal properties of the isolated natural products were evaluated by their minimum inhibitory concentration (MIC) in a dilution assay against both wild type and engineered strains of C. albicans. The biological activity of the most promising agents was further evaluated in vitro by electron microscopy and in vivo in a Galleria mellonella model of C. albicans infection. The overall procedure represents a rational and comprehensive means of evaluating antifungal activity from various perspectives for the selection of initial hits that can be explored in more in-depth mode-of-action studies. This strategy is illustrated by the identification and bioactivity evaluation of a series of antifungal compounds from the methanolic extract of a Rubiaceae plant, Morinda tomentosa, which was used as a model in these studies.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Candida albicans/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Rubiaceae/química , Animales , Antifúngicos/química , Productos Biológicos/química , Candida albicans/genética , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Estructura Molecular
10.
Sleep ; 36(3): 311-23, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23450268

RESUMEN

STUDY OBJECTIVES: Besides their well-established role in circadian rhythms, our findings that the forebrain expression of the clock-genes Per2 and Dbp increases and decreases, respectively, in relation to time spent awake suggest they also play a role in the homeostatic aspect of sleep regulation. Here, we determined whether time of day modulates the effects of elevated sleep pressure on clock-gene expression. Time of day effects were assessed also for recognized electrophysiological (EEG delta power) and molecular (Homer1a) markers of sleep homeostasis. DESIGN: EEG and qPCR data were obtained for baseline and recovery from 6-h sleep deprivation starting at ZT0, -6, -12, or -18. SETTING: Mouse sleep laboratory. PARTICIPANTS: Male mice. INTERVENTIONS: Sleep deprivation. RESULTS: The sleep-deprivation induced changes in Per2 and Dbp expression importantly varied with time of day, such that Per2 could even decrease during sleep deprivations occurring at the decreasing phase in baseline. Dbp showed similar, albeit opposite dynamics. These unexpected results could be reliably predicted assuming that these transcripts behave according to a driven damped harmonic oscillator. As expected, the sleep-wake distribution accounted for a large degree of the changes in EEG delta power and Homer1a. Nevertheless, the sleep deprivation-induced increase in delta power varied also with time of day with higher than expected levels when recovery sleep started at dark onset. CONCLUSIONS: Per2 and delta power are widely used as exclusive state variables of the circadian and homeostatic process, respectively. Our findings demonstrate a considerable cross-talk between these two processes. As Per2 in the brain responds to both sleep loss and time of day, this molecule is well positioned to keep track of and to anticipate homeostatic sleep need. CITATION: Curie T; Mongrain V; Dorsaz S; Mang GM; Emmenegger Y; Franken P. Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. SLEEP 2013;36(3):311-323.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Unión al ADN/metabolismo , Electroencefalografía/métodos , Homeostasis/fisiología , Proteínas Circadianas Period/metabolismo , Sueño/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Expresión Génica/fisiología , Proteínas de Andamiaje Homer , Masculino , Ratones , Ratones Endogámicos AKR , Ratones Endogámicos C57BL , Prosencéfalo/metabolismo , Privación de Sueño/metabolismo
11.
J Clin Invest ; 120(3): 713-9, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20160349

RESUMEN

Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and attacks of muscle atonia triggered by strong emotions (cataplexy). Narcolepsy is caused by hypocretin (orexin) deficiency, paralleled by a dramatic loss in hypothalamic hypocretin-producing neurons. It is believed that narcolepsy is an autoimmune disorder, although definitive proof of this, such as the presence of autoantibodies, is still lacking. We engineered a transgenic mouse model to identify peptides enriched within hypocretin-producing neurons that could serve as potential autoimmune targets. Initial analysis indicated that the transcript encoding Tribbles homolog 2 (Trib2), previously identified as an autoantigen in autoimmune uveitis, was enriched in hypocretin neurons in these mice. ELISA analysis showed that sera from narcolepsy patients with cataplexy had higher Trib2-specific antibody titers compared with either normal controls or patients with idiopathic hypersomnia, multiple sclerosis, or other inflammatory neurological disorders. Trib2-specific antibody titers were highest early after narcolepsy onset, sharply decreased within 2-3 years, and then stabilized at levels substantially higher than that of controls for up to 30 years. High Trib2-specific antibody titers correlated with the severity of cataplexy. Serum of a patient showed specific immunoreactivity with over 86% of hypocretin neurons in the mouse hypothalamus. Thus, we have identified reactive autoantibodies in human narcolepsy, providing evidence that narcolepsy is an autoimmune disorder.


Asunto(s)
Autoanticuerpos/sangre , Autoantígenos/metabolismo , Enfermedades Autoinmunes/sangre , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Narcolepsia/sangre , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Autoanticuerpos/inmunología , Autoantígenos/genética , Autoantígenos/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Proteínas Quinasas Dependientes de Calcio-Calmodulina , Femenino , Humanos , Hipotálamo/inmunología , Hipotálamo/metabolismo , Hipotálamo/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Masculino , Ratones , Ratones Transgénicos , Narcolepsia/genética , Narcolepsia/inmunología , Narcolepsia/patología , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/genética , Neuropéptidos/inmunología , Neuropéptidos/metabolismo , Orexinas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Índice de Severidad de la Enfermedad , Trastornos del Inicio y del Mantenimiento del Sueño/sangre , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Trastornos del Inicio y del Mantenimiento del Sueño/inmunología , Trastornos del Inicio y del Mantenimiento del Sueño/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA