Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(14): 7392-7425, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38894661

RESUMEN

Descriptors play a crucial role in electrocatalysis as they can provide valuable insights into the electrochemical performance of energy conversion and storage processes. They allow for the understanding of different catalytic activities and enable the prediction of better catalysts without relying on the time-consuming trial-and-error approaches. Hence, this comprehensive review focuses on highlighting the significant advancements in commonly used descriptors for critical electrocatalytic reactions. First, the fundamental reaction processes and key intermediates involved in several electrocatalytic reactions are summarized. Subsequently, three types of descriptors are classified and introduced based on different reactions and catalysts. These include d-band center descriptors, readily accessible intrinsic property descriptors, and spin-related descriptors, all of which contribute to a profound understanding of catalytic behavior. Furthermore, multi-type descriptors that collectively determine the catalytic performance are also summarized. Finally, we discuss the future of descriptors, envisioning their potential to integrate multiple factors, broaden application scopes, and synergize with artificial intelligence for more efficient catalyst design and discovery.

2.
Small ; 17(44): e2104288, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34596974

RESUMEN

Glycerol electrolysis affords a green and energetically favorable route for the production of value-added chemicals at the anode and H2 production in parallel at the cathode. Here, a facile method for trapping Pt nanoparticles at oxygen vacancies of molybdenum oxide (MoOx ) nanosheets, yielding a high-performance MoOx /Pt composite electrocatalyst for both the glycerol oxidation reaction (GOR) and the hydrogen evolution reaction (HER) in alkaline electrolytes, is reported. Combined electrochemical experiments and theoretical calculations reveal the important role of MoOx nanosheets for the adsorption of glycerol molecules in GOR and the dissociation of water molecules in HER, as well as the strong electronic interaction with Pt. The MoOx /Pt composite thus significantly enhances the specific mass activity of Pt and the kinetics for both reactions. With MoOx /Pt electrodes serving as both cathode and anode, two-electrode glycerol electrolysis is achieved at a cell voltage of 0.70 V to reach a current density of 10 mA cm-2 , which is 0.90 V less than that required for water electrolysis.


Asunto(s)
Glicerol , Hidrógeno , Catálisis , Electrodos , Electrólisis
3.
Nat Commun ; 13(1): 6853, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369277

RESUMEN

Density functional theory predictions of binding energies and reaction barriers provide invaluable data for analyzing chemical transformations in heterogeneous catalysis. For high accuracy, effects of band structure and coverage, as well as the local bond strength in both covalent and non-covalent interactions, must be reliably described and much focus has been put on improving functionals to this end. Here, we show that a correction from higher-level calculations on small metal clusters can be applied to improve periodic band structure adsorption energies and barriers. We benchmark against 38 reliable experimental covalent and non-covalent adsorption energies and five activation barriers with mean absolute errors of 2.2 kcal mol-1, 2.7 kcal mol-1, and 1.1 kcal mol-1, respectively, which are lower than for functionals widely used and tested for surface science evaluations, such as BEEF-vdW and RPBE.


Asunto(s)
Teoría Cuántica , Elementos de Transición , Adsorción , Elementos de Transición/química , Catálisis , Metales
4.
J Chem Theory Comput ; 16(3): 1768-1778, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32040315

RESUMEN

The SCC-DFTB repulsion parameters based on the material science set (matsci) were redesigned to describe the structure and dynamic properties of bulk liquid water. The iterative Boltzman inversion (IBI) approach was applied by simultaneously correcting the O-H and O-O SCC-DFTB repulsion energy contribution to develop the new water-matsci and water-matsci-UFF set of parameters. The water-matsci parameters provide O-O and O-H radial distribution functions in excellent agreement with available state-of-the-art experimental data. The parametrization is applied to compute binding energies of a set of water clusters with 2-10 molecules and compared to other DFTB parameters and reference data. The self-diffusion coefficients of ambient and supercooled (254 K) water have been estimated and compared to other SCC-DFTB calculated values and experiment. The performance of the new parameters for describing the density of ambient water and reactions involving water dissociation into H3O+ and OH-, the self-diffusion coefficient, and neutralization energy were investigated. Finally, we show that the new parametrization can be reliably applied to adsorption of water on the mineral pyrite by combining the new water-matsci parameters with the available matsci set of parameters for pyrite. This opens opportunities for investigating materials and phenomena of increasing complexity involving water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA