Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Brain ; 147(9): 3009-3017, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38874456

RESUMEN

Successful surgical treatment of drug-resistant epilepsy traditionally relies on the identification of seizure onset zones (SOZs). Connectome-based analyses of electrographic data from stereo electroencephalography (SEEG) may empower improved detection of SOZs. Specifically, connectome-based analyses based on the interictal suppression hypothesis posit that when the patient is not having a seizure, SOZs are inhibited by non-SOZs through high inward connectivity and low outward connectivity. However, it is not clear whether there are other motifs that can better identify potential SOZs. Thus, we sought to use unsupervised machine learning to identify network motifs that elucidate SOZs and investigate if there is another motif that outperforms the ISH. Resting-state SEEG data from 81 patients with drug-resistant epilepsy undergoing a pre-surgical evaluation at Vanderbilt University Medical Center were collected. Directed connectivity matrices were computed using the alpha band (8-13 Hz). Principal component analysis (PCA) was performed on each patient's connectivity matrix. Each patient's components were analysed qualitatively to identify common patterns across patients. A quantitative definition was then used to identify the component that most closely matched the observed pattern in each patient. A motif characteristic of the interictal suppression hypothesis (high-inward and low-outward connectivity) was present in all individuals and found to be the most robust motif for identification of SOZs in 64/81 (79%) patients. This principal component demonstrated significant differences in SOZs compared to non-SOZs. While other motifs for identifying SOZs were present in other patients, they differed for each patient, suggesting that seizure networks are patient specific, but the ISH is present in nearly all networks. We discovered that a potentially suppressive motif based on the interictal suppression hypothesis was present in all patients, and it was the most robust motif for SOZs in 79% of patients. Each patient had additional motifs that further characterized SOZs, but these motifs were not common across all patients. This work has the potential to augment clinical identification of SOZs to improve epilepsy treatment.


Asunto(s)
Conectoma , Epilepsia Refractaria , Electroencefalografía , Epilepsias Parciales , Convulsiones , Humanos , Epilepsias Parciales/fisiopatología , Epilepsias Parciales/cirugía , Masculino , Femenino , Adulto , Electroencefalografía/métodos , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/cirugía , Convulsiones/fisiopatología , Conectoma/métodos , Adulto Joven , Persona de Mediana Edad , Adolescente , Encéfalo/fisiopatología , Aprendizaje Automático no Supervisado
2.
Epilepsia ; 65(9): 2686-2699, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39056406

RESUMEN

OBJECTIVE: Epilepsy is a common neurological disorder affecting 1% of the global population. Loss of consciousness in focal impaired awareness seizures (FIASs) and focal-to-bilateral tonic-clonic seizures (FBTCSs) can be devastating, but the mechanisms are not well understood. Although ictal activity and interictal connectivity changes have been noted, the network states of focal aware seizures (FASs), FIASs, and FBTCSs have not been thoroughly evaluated with network measures ictally. METHODS: We obtained electrographic data from 74 patients with stereoelectroencephalography (SEEG). Sliding window band power, functional connectivity, and segregation were computed on preictal, ictal, and postictal data. Five-minute epochs of wake, rapid eye movement sleep, and deep sleep were also extracted. Connectivity of subcortical arousal structures was analyzed in a cohort of patients with both SEEG and functional magnetic resonance imaging (fMRI). Given that custom neuromodulation of seizures is predicated on detection of seizure type, a convolutional neural network was used to classify seizure types. RESULTS: We found that in the frontoparietal association cortex, an area associated with consciousness, both consciousness-impairing seizures (FIASs and FBTCSs) and deep sleep had increases in slow wave delta (1-4 Hz) band power. However, when network measures were employed, we found that only FIASs and deep sleep exhibited an increase in delta segregation and a decrease in gamma segregation. Furthermore, we found that only patients with FIASs had reduced subcortical-to-neocortical functional connectivity with fMRI versus controls. Finally, our deep learning network demonstrated an area under the curve of .75 for detecting consciousness-impairing seizures. SIGNIFICANCE: This study provides novel insights into ictal network measures in FASs, FIASs, and FBTCSs. Importantly, although both FIASs and FBTCSs result in loss of consciousness, our results suggest that ictal network changes in FIASs uniquely resemble those that occur during deep sleep. Our results may inform novel neuromodulation strategies for preservation of consciousness in epilepsy.


Asunto(s)
Estado de Conciencia , Electroencefalografía , Imagen por Resonancia Magnética , Convulsiones , Humanos , Masculino , Femenino , Electroencefalografía/métodos , Adulto , Convulsiones/fisiopatología , Convulsiones/diagnóstico , Estado de Conciencia/fisiología , Adulto Joven , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Adolescente , Epilepsias Parciales/fisiopatología , Inconsciencia/fisiopatología
3.
Brain ; 146(7): 2828-2845, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36722219

RESUMEN

Why are people with focal epilepsy not continuously having seizures? Previous neuronal signalling work has implicated gamma-aminobutyric acid balance as integral to seizure generation and termination, but is a high-level distributed brain network involved in suppressing seizures? Recent intracranial electrographic evidence has suggested that seizure-onset zones have increased inward connectivity that could be associated with interictal suppression of seizure activity. Accordingly, we hypothesize that seizure-onset zones are actively suppressed by the rest of the brain network during interictal states. Full testing of this hypothesis would require collaboration across multiple domains of neuroscience. We focused on partially testing this hypothesis at the electrographic network level within 81 individuals with drug-resistant focal epilepsy undergoing presurgical evaluation. We used intracranial electrographic resting-state and neurostimulation recordings to evaluate the network connectivity of seizure onset, early propagation and non-involved zones. We then used diffusion imaging to acquire estimates of white-matter connectivity to evaluate structure-function coupling effects on connectivity findings. Finally, we generated a resting-state classification model to assist clinicians in detecting seizure-onset and propagation zones without the need for multiple ictal recordings. Our findings indicate that seizure onset and early propagation zones demonstrate markedly increased inwards connectivity and decreased outwards connectivity using both resting-state (one-way ANOVA, P-value = 3.13 × 10-13) and neurostimulation analyses to evaluate evoked responses (one-way ANOVA, P-value = 2.5 × 10-3). When controlling for the distance between regions, the difference between inwards and outwards connectivity remained stable up to 80 mm between brain connections (two-way repeated measures ANOVA, group effect P-value of 2.6 × 10-12). Structure-function coupling analyses revealed that seizure-onset zones exhibit abnormally enhanced coupling (hypercoupling) of surrounding regions compared to presumably healthy tissue (two-way repeated measures ANOVA, interaction effect P-value of 9.76 × 10-21). Using these observations, our support vector classification models achieved a maximum held-out testing set accuracy of 92.0 ± 2.2% to classify early propagation and seizure-onset zones. These results suggest that seizure-onset zones are actively segregated and suppressed by a widespread brain network. Furthermore, this electrographically observed functional suppression is disproportionate to any observed structural connectivity alterations of the seizure-onset zones. These findings have implications for the identification of seizure-onset zones using only brief electrographic recordings to reduce patient morbidity and augment the presurgical evaluation of drug-resistant epilepsy. Further testing of the interictal suppression hypothesis can provide insight into potential new resective, ablative and neuromodulation approaches to improve surgical success rates in those suffering from drug-resistant focal epilepsy.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Humanos , Electroencefalografía/métodos , Convulsiones , Encéfalo
4.
J Neurol Neurosurg Psychiatry ; 95(1): 86-96, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37679029

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is commonly performed with patients awake to perform intraoperative microelectrode recordings and/or macrostimulation testing to guide final electrode placement. Supplemental information from atlas-based databases derived from prior patient data and visualised as efficacy heat maps transformed and overlaid onto preoperative MRIs can be used to guide preoperative target planning and intraoperative final positioning. Our quantitative analysis of intraoperative testing and corresponding changes made to final electrode positioning aims to highlight the value of intraoperative neurophysiological testing paired with image-based data to optimise final electrode positioning in a large patient cohort. METHODS: Data from 451 patients with movement disorders treated with 822 individual DBS leads at a single institution from 2011 to 2021 were included. Atlas-based data was used to guide surgical targeting. Intraoperative testing data and coordinate data were retrospectively obtained from a large patient database. Medical records were reviewed to obtain active contact usage and neurologist-defined outcomes at 1 year. RESULTS: Microelectrode recording firing profiles differ per track, per target and inform the locations where macrostimulation testing is performed. Macrostimulation performance correlates with the final electrode track chosen. Centroids of atlas-based efficacy heat maps per target were close in proximity to and may predict active contact usage at 1 year. Overall, patient outcomes at 1 year were improved for patients with better macrostimulation response. CONCLUSIONS: Atlas-based imaging data is beneficial for target planning and intraoperative guidance, and in conjunction with intraoperative neurophysiological testing during awake DBS can be used to individualize and optimise final electrode positioning, resulting in favourable outcomes.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Estudios Retrospectivos , Vigilia , Enfermedad de Parkinson/cirugía , Imagen por Resonancia Magnética , Microelectrodos , Electrodos Implantados
5.
Curr Opin Neurol ; 35(2): 196-201, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34799514

RESUMEN

PURPOSE OF REVIEW: Patients with focal drug-resistant epilepsy (DRE) sometimes continue to have seizures after surgery. Recently, there is increasing interest in using advanced network analyses (connectomics) to better understand this problem. Connectomics has changed the way researchers and clinicians view DRE, but it must be applied carefully in a hypothesis-driven manner to avoid spurious results. This review will focus on studies published in the last 18 months that have thoughtfully used connectomics to advance our fundamental understanding of network dysfunction in DRE - hopefully for the eventual direct benefit to patient care. RECENT FINDINGS: Impactful recent findings have centered on using patient-specific differences in network dysfunction to predict surgical outcome. These works span functional and structural connectivity and include the modalities of functional and diffusion magnetic resonance imaging (MRI) and electrophysiology. Using functional MRI, many groups have described an increased functional segregation outside of the surgical resection zone in patients who fail surgery. Using electrophysiology, groups have reported network characteristics of resected tissue that suggest whether a patient will respond favorably to surgery. SUMMARY: If we can develop accurate models to outline functional and structural network characteristics that predict failure of standard surgical approaches, then we can not only improve current clinical decision-making; we can also begin developing alternative treatments including network approaches to improve surgical success rates.


Asunto(s)
Conectoma , Epilepsia Refractaria , Epilepsia , Conectoma/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Convulsiones
6.
Neurosurg Clin N Am ; 35(1): 61-72, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000842

RESUMEN

Epilepsy surgery is a potentially curative treatment of drug-resistant epilepsy that has remained underutilized both due to inadequate referrals and incomplete localization hypotheses. The complexity of patients evaluated for epilepsy surgery has increased, thus new approaches are necessary to treat these patients. The paradigm of epilepsy surgery has evolved to match this challenge, now considering the entire seizure network with the goal of disrupting it through resection, ablation, neuromodulation, or a combination. The network paradigm has the potential to aid in identification of the seizure network as well as treatment selection.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Convulsiones/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Mapeo Encefálico/métodos , Técnicas Estereotáxicas , Resultado del Tratamiento
7.
Neurology ; 103(7): e209816, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39226517

RESUMEN

BACKGROUND AND OBJECTIVES: Despite the success of presurgical network connectivity studies in predicting short-term (1-year) seizure outcomes, later seizure recurrence occurs in some patients with temporal lobe epilepsy (TLE). To uncover contributors to this recurrence, we investigated the relationship between functional connectivity and seizure outcomes at different time points after surgery in these patients. METHODS: Patients included were clinically diagnosed with unilateral mesial TLE after a standard clinical evaluation and underwent selective amygdalohippocampectomy. Healthy controls had no history of seizures or head injury. Using resting-state fMRI, we assessed the postsurgical functional connectivity node strength, computed as the node's total strength to all other nodes, between seizure-free (Engel Ia-Ib) and nonseizure-free (Engel Ic-IV) acquisitions. The change over time after surgery in different outcome groups in these nodes was also characterized. RESULTS: Patients with TLE (n = 32, mean age: 43.1 ± 11.9 years; 46.8% female) and 85 healthy controls (mean age: 37.7 ± 13.5 years; 48.2% female) were included. Resting fMRI was acquired before surgery and at least once after surgery in each patient (range 1-4 scans, 5-60 months). Differences between patients with (n = 30) and without (n = 18) seizure freedom were detected in the posterior insula ipsilateral to the resection (I-PIns: 95% CI -154.8 to -50.1, p = 2.8 × 10-4) and the bilateral central operculum (I-CO: 95% CI -163.2 to -65.1, p = 2.6 × 10-5, C-CO: 95% CI -172.7 to -55.8, p = 2.8 × 10-4). In these nodes, only those who were seizure-free had increased node strength after surgery that increased linearly over time (I-CO: 95% CI 1.0-5.2, p = 4.2 × 10-3, C-CO: 95% CI 1.0-5.2, p = 5.5 × 10-3, I-PIns: 95% CI 1.6-5.5, p = 0.9 × 10-3). Different outcome groups were not distinguished by node strength before surgery. DISCUSSION: The findings suggest that network evolution in the first 5 years after selective amygdalohippocampectomy surgery is related to seizure outcomes in TLE. This highlights the need to identify presurgical and surgical conditions that lead to disparate postsurgical trajectories between seizure-free and nonseizure-free patients to identify potential contributors to long-term seizure outcomes. However, the lack of including other surgical approaches may affect the generalizability of the results.


Asunto(s)
Epilepsia del Lóbulo Temporal , Imagen por Resonancia Magnética , Convulsiones , Humanos , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Resultado del Tratamiento , Convulsiones/cirugía , Convulsiones/fisiopatología , Convulsiones/diagnóstico por imagen , Hipocampo/cirugía , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Amígdala del Cerebelo/cirugía , Amígdala del Cerebelo/fisiopatología , Amígdala del Cerebelo/diagnóstico por imagen
8.
J Neurosurg ; 138(3): 810-820, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35901709

RESUMEN

OBJECTIVE: It is poorly understood why patients with mesial temporal lobe epilepsy (TLE) have cognitive deficits and brain network changes that extend beyond the temporal lobe, including altered extratemporal intrinsic connectivity networks (ICNs). However, subcortical arousal structures project broadly to the neocortex, are affected by TLE, and thus may contribute to these widespread network effects. The authors' objective was to examine functional connectivity (FC) patterns between subcortical arousal structures and neocortical ICNs, possible neurocognitive relationships, and FC changes after epilepsy surgery. METHODS: The authors obtained resting-state functional magnetic resonance imaging (fMRI) in 50 adults with TLE and 50 controls. They compared nondirected FC (correlation) and directed FC (Granger causality laterality index) within the salience network, default mode network, and central executive network, as well as between subcortical arousal structures; these 3 ICNs were also compared between patients and controls. They also used an fMRI-based vigilance index to relate alertness to arousal center FC. Finally, fMRI was repeated in 29 patients > 12 months after temporal lobe resection. RESULTS: Nondirected FC within the salience (p = 0.042) and default mode (p = 0.0008) networks, but not the central executive network (p = 0.79), was decreased in patients in comparison with controls (t-tests, corrected). Nondirected FC between the salience network and subcortical arousal structures (nucleus basalis of Meynert, thalamic centromedian nucleus, and brainstem pedunculopontine nucleus) was reduced in patients in comparison with controls (p = 0.0028-0.015, t-tests, corrected), and some of these connectivity abnormalities were associated with lower processing speed index, verbal comprehension, and full-scale IQ. Interestingly, directed connectivity measures suggested a loss of top-down influence from the salience network to the arousal nuclei in patients. After resection, certain FC patterns between the arousal nuclei and salience network moved toward control values in the patients, suggesting that some postoperative recovery may be possible. Although an fMRI-based vigilance measure suggested that patients exhibited reduced alertness over time, FC abnormalities between the salience network and arousal structures were not influenced by the alertness levels during the scans. CONCLUSIONS: FC abnormalities between subcortical arousal structures and ICNs, such as the salience network, may be related to certain neurocognitive deficits in TLE patients. Although TLE patients demonstrated vigilance abnormalities, baseline FC perturbations between the arousal and salience networks are unlikely to be driven solely by alertness level, and some may improve after surgery. Examination of the arousal network and ICN disturbances may improve our understanding of the downstream clinical effects of TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Neocórtex , Adulto , Humanos , Epilepsia del Lóbulo Temporal/cirugía , Encéfalo , Tronco Encefálico , Nivel de Alerta , Atención , Mapeo Encefálico , Imagen por Resonancia Magnética
9.
J Neurosurg ; 139(3): 640-650, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36807210

RESUMEN

OBJECTIVE: This study sought to characterize resting-state functional MRI (fMRI) connectivity patterns of the posterior hypothalamus (pHTH) and the nucleus basalis of Meynert (NBM) in surgical patients with mesial temporal lobe epilepsy (mTLE), and to investigate potential correlations between functional connectivity of these arousal regions and neurocognitive performance. METHODS: The study evaluated resting-state fMRI in 60 patients with preoperative mTLE and in 95 healthy controls. The authors first conducted voxel-wise connectivity analyses seeded from the pHTH, combined anterior and tuberal hypothalamus (atHTH; i.e., the rest of the hypothalamus), and the NBM ipsilateral (ipsiNBM) and contralateral (contraNBM) to the epileptogenic zone. Based on these results, the authors included the pHTH, ipsiNBM, and frontoparietal neocortex in a network-based statistic (NBS) analysis to elucidate a network that best distinguishes patients from controls. The connections involving the pHTH and ipsiNBM from this network were included in age-corrected pairwise region of interest (ROI) analysis, along with connections between arousal structures, including the pHTH, ipsiNBM, and brainstem arousal regions. Finally, patient functional connectivity was correlated with clinical neurocognitive testing scores for IQ as well as attention and concentration tests. RESULTS: The voxel-wise analysis demonstrated that the pHTH, when compared with the atHTH, showed more widespread functional connectivity decreases in surgical mTLE patients when compared with controls. It was also observed that the ipsiNBM, but not the contraNBM, showed decreased functional connectivity in mTLE. The NBS analysis uncovered a perturbed network of frontoparietal regions, the pHTH, and ipsiNBM that distinguishes patients from controls. Age-corrected ROI analysis revealed functional connectivity decreases between the pHTH and bilateral superior frontal gyri, medial orbitofrontal cortices, rostral anterior cingulate cortices, and inferior parietal cortices in mTLE when compared with controls. For the ipsiNBM, there was reduced connectivity with bilateral medial orbitofrontal and rostral anterior cingulate cortices. Age-corrected ROI analysis also demonstrated upstream connectivity decreases from controls between the pHTH and the brainstem arousal regions, cuneiform/subcuneiform (CSC) nuclei, and ventral tegmental area, as well as the ipsiNBM and CSC nuclei. Reduced functional connectivity was also detected between the pHTH and ipsiNBM. Lastly, neurocognitive test scores for attention and concentration were found to be positively correlated with the functional connectivity between the pHTH and ipsiNBM, suggesting worse performance associated with connectivity perturbations. CONCLUSIONS: This study demonstrated perturbed resting-state functional connectivity of arousal regions in surgical mTLE and is one of the first investigations to demonstrate decreased functional connectivity of the pHTH with frontoparietal regions and other arousal regions. Connectivity disturbances in arousal regions may contribute to neurocognitive deficits in surgical mTLE patients.


Asunto(s)
Epilepsia del Lóbulo Temporal , Neocórtex , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Mapeo Encefálico , Hipotálamo Posterior , Nivel de Alerta , Imagen por Resonancia Magnética
10.
Spine (Phila Pa 1976) ; 48(23): 1688-1695, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37644737

RESUMEN

STUDY DESIGN: Retrospective cohort. OBJECTIVE: In a cohort of patients undergoing adult spinal deformity (ASD) surgery, we used artificial intelligence to compare three models of preoperatively predicting radiographic proximal junction kyphosis (PJK) using: (1) traditional demographics and radiographic measurements, (2) raw preoperative scoliosis radiographs, and (3) raw preoperative thoracic magnetic resonance imaging (MRI). SUMMARY OF BACKGROUND DATA: Despite many proposed risk factors, PJK following ASD surgery remains difficult to predict. MATERIALS AND METHODS: A single-institution, retrospective cohort study was undertaken for patients undergoing ASD surgery from 2009 to 2021. PJK was defined as a sagittal Cobb angle of upper-instrumented vertebra (UIV) and UIV+2>10° and a postoperative change in UIV/UIV+2>10°. For model 1, a support vector machine was used to predict PJK within 2 years postoperatively using clinical and traditional sagittal/coronal radiographic variables and intended levels of instrumentation. Next, for model 2, a convolutional neural network (CNN) was trained on raw preoperative lateral and posterior-anterior scoliosis radiographs. Finally, for model 3, a CNN was trained on raw preoperative thoracic T1 MRIs. RESULTS: A total of 191 patients underwent ASD surgery with at least 2-year follow-up and 89 (46.6%) developed radiographic PJK within 2 years. Model 1: Using clinical variables and traditional radiographic measurements, the model achieved a sensitivity: 57.2% and a specificity: 56.3%. Model 2: a CNN with raw scoliosis x-rays predicted PJK with a sensitivity: 68.2% and specificity: 58.3%. Model 3: a CNN with raw thoracic MRIs predicted PJK with average sensitivity: 73.1% and specificity: 79.5%. Finally, an attention map outlined the imaging features used by model 3 elucidated that soft tissue features predominated all true positive PJK predictions. CONCLUSIONS: The use of raw MRIs in an artificial intelligence model improved the accuracy of PJK prediction compared with raw scoliosis radiographs and traditional clinical/radiographic measurements. The improved predictive accuracy using MRI may indicate that PJK is best predicted by soft tissue degeneration and muscle atrophy.


Asunto(s)
Cifosis , Escoliosis , Fusión Vertebral , Humanos , Adulto , Estudios Retrospectivos , Escoliosis/cirugía , Inteligencia Artificial , Cifosis/cirugía , Columna Vertebral/cirugía , Factores de Riesgo , Fusión Vertebral/métodos , Complicaciones Posoperatorias/etiología
11.
J Neurosurg ; 138(4): 1002-1007, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36152321

RESUMEN

OBJECTIVE: In drug-resistant temporal lobe epilepsy, automated tools for seizure onset zone (SOZ) localization that use brief interictal recordings could supplement presurgical evaluations and improve care. Thus, the authors sought to localize SOZs by training a multichannel convolutional neural network on stereoelectroencephalography (SEEG) cortico-cortical evoked potentials. METHODS: The authors performed single-pulse electrical stimulation in 10 drug-resistant temporal lobe epilepsy patients implanted with SEEG. Using 500,000 unique poststimulation SEEG epochs, the authors trained a multichannel 1-dimensional convolutional neural network to determine whether an SOZ had been stimulated. RESULTS: SOZs were classified with mean sensitivity of 78.1% and specificity of 74.6% according to leave-one-patient-out testing. To achieve maximum accuracy, the model required a 0- to 350-msec poststimulation time period. Post hoc analysis revealed that the model accurately classified unilateral versus bilateral mesial temporal lobe seizure onset, as well as neocortical SOZs. CONCLUSIONS: This was the first demonstration, to the authors' knowledge, that a deep learning framework can be used to accurately classify SOZs with single-pulse electrical stimulation-evoked responses. These findings suggest that accurate classification of SOZs relies on a complex temporal evolution of evoked responses within 350 msec of stimulation. Validation in a larger data set could provide a practical clinical tool for the presurgical evaluation of drug-resistant epilepsy.


Asunto(s)
Aprendizaje Profundo , Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Epilepsia del Lóbulo Temporal/cirugía , Electroencefalografía/métodos , Epilepsia Refractaria/cirugía , Convulsiones/cirugía
12.
Clin Spine Surg ; 32(7): E335-E339, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31162183

RESUMEN

STUDY DESIGN: A radiographic study of computed tomography scans of the pelvis converted to 3-dimensional imaging. OBJECTIVE: The objective of this study was to determine the optimal length and trajectory of S2 alar iliac (S2AI) screws. SUMMARY OF BACKGROUND DATA: Solid pelvic fixation is a necessary component in thoracolumbar deformity surgery to protect sacral fixation and promote arthrodesis. The S2AI technique has been promoted as a way to reduce hardware prominence and instrumentation issues associated with traditional iliac fixation. MATERIALS AND METHODS: In total, 64 of 100 patients randomly selected from our institution's spine registry were able to be converted to 3-dimensional imaging. Virtual screws were then placed in the optimal position for an S2AI screw on each side of the pelvis. The lateral and inferior angles were measured off-axial and sagittal planes, respectively. The distances from the notch and the remaining available screw length were also recorded. RESULTS: The average patient age was 38±16 years. The average lateral angle was 42.5±2.0 degrees and the inferior angle was 18.2±1.8 degrees. The screws fit bilaterally in all 64 patients without cortical breach. The remaining available screw distance was measured in all patients and found to be 40.5±8.7 mm. The average distance from the sciatic notch was 13.8±4.1 mm. Men had significantly more potential screw length when compared with women. CONCLUSIONS: We found an average inferior angle of 18.2 degrees, which is less than the previously described angle range of 20-40 degrees. These findings suggest that an ideal trajectory may be significantly different than the previously described trajectory. We found that with the optimal trajectory, a 100 mm screw can fit in all patients without concern for cortical breach of the pelvis or violation of the hip joint.


Asunto(s)
Tornillos Óseos , Diseño Asistido por Computadora , Ilion/cirugía , Imagenología Tridimensional , Adulto , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA