Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 368: 122126, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116809

RESUMEN

Soil respiration (RS) is crucial for releasing carbon dioxide (CO2) from terrestrial ecosystems to atmosphere. Prescribed burning (a common forest management tool), along with its important by-product pyrogenic carbon (PyC), can influence the carbon cycle of forest soil. However, few studies explore RS and PyC spatial correlation after prescribed burning. In this study, we investigated the spatial pattern of RS and its influencing factors by conducting prescribed burnings in a temperate artificial Pinus koraiensis forest. RS was measured 1 day (1 d) pre-prescribed burning, 1 d, 1 year (1 yr) and two years (2 yr) after prescribed burning. Significant decrease in RS were observed 1-2 yr After burning (reductions of 65.2% and 41.7% respectively). The spatial autocorrelation range of RS decreased pre-burning (2.72m), then increased post-burning (1 d: 2.44m; 1 yr: 40.14m; 2 yr: 9.8m), indicating a more homogeneous distribution of patch reduction. Pyrogenic carbon (PyC) in the soil gradually decreased in the short term after burning with reductions of 19%, 52%, and 49% (1d., 1 yr And 2 yr After the fire, respectively). However, PyC and RS exhibited a strong spatial positive correlation from 1 d.- 1 yr post-burning. The spatial regression model of dissolved organic carbon (DOC) on RS demonstrated significant positive spatial correlation in all measurements (pre- and post-burning). Microbial carbon to soil nitrogen ratio (MCN) notably influenced RS pre-burning and 1-2 yr post-burning. RS also showed significant spatial correlation in cross-variance with NH4+-N and NO3--N post-burning. The renewal of the PyC positively influenced RS, subsequently affecting its spatial distribution in 1d.- 1yr. Introducing PyC into RS studies helps enhances understanding of prescribed fire effects on forest soil carbon (C) pools, and provides valuable information regarding regional or ecosystem C cycling, facilitating a more accurate prediction of post-burning changes in forest soil C pools.


Asunto(s)
Bosques , Pinus , Suelo , Suelo/química , China , Dióxido de Carbono/análisis , Ciclo del Carbono , Carbono/análisis , Ecosistema , Incendios
2.
Environ Res ; 237(Pt 2): 117065, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37660872

RESUMEN

Dissolved organic carbon (DOC) is an important function of soil organic carbon and sensitive to environmental disturbance. Few studies have explored the variations in soil DOC dynamics and effects on soil physicochemical properties following prescribed burnings. In this study, Pinus koraiensis plantation forests in Northeast China were selected and subjected to prescribed burning in early November 2018. Soil DOC and different soil physicochemical and biological properties in the 0-10 cm and 10-20 cm soil layers were sampled six times within two years after a prescribed burning. In this study, some soil physicochemical (SOC, TN, and ST) and microbial biomass properties (MBC) recovered within two years after a prescribed burning. Compared to the unburned control stands, the post-fire soil DOC concentrations in the upper and lower soil layers increased by 16% and 12%, respectively. Soil DOC concentrations varied with sampling time, and peaked one year after the prescribed burning. Our results showed that soil chemical properties (NH4+-N and pH) rather than biological properties (microbial biomass) were the main driving factors for changes in post-fire soil DOC concentrations. Current study provides an important reference for post-fire and seasonal soil C cycling in plantation forests of Northeast China.

3.
Sci Total Environ ; 864: 161102, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566854

RESUMEN

Wildfires play a critical role in regulating soil carbon (C) budgets in peatland ecosystems, and their frequency and intensity are increasing owing to climate change and human activities. Wildfires not only emit CO2 during the combustion process but also produce pyrogenic carbon (PyC), which accumulates in the soil C pool and influences soil C decomposition. However, the role of PyC after a fire in peatland soil C mineralization has rarely been examined. This study investigated the effects of PyC addition on peatland soil C mineralization and its potential driving mechanisms using an anaerobic/aerobic incubation experiment with peat soils collected from typical peatlands in the Great Khingan Mountains, Northeast China. The effect of PyC was more pronounced under aerobic conditions than under anaerobic conditions. The mean C- mineralization rates of soil were significantly increased by 45.2 ± 15.5 % and 87.6 ± 14.3 % with 10 % PyC250°C addition after the initial stage (D7) of aerobic and anaerobic incubation, but PyC600°C addition caused a to decrease. Compared with PyC600°C, PyC250°C addition significantly increased the available N content and altered the soil microbial activities, which may be the primary reason for the increase in C mineralization rates. Furthermore, adding a high concentration of PyC (10 %) reduced the concentration of phenolics but increased phenol oxidase activity, which promoted C mineralization rates. Thus, PyC250°C addition to peat soils mainly influences the microbial biomass C content through the accumulation of available N and phenolics, which ultimately positively affects C mineralization rates.


Asunto(s)
Ecosistema , Suelo , Humanos , Carbono/análisis , Cambio Climático , China
4.
Sci Rep ; 6: 31737, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27553516

RESUMEN

Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA