Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pharmacol Res ; 137: 34-46, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30243842

RESUMEN

Inflammatory bowel disease (IBD), majorly include Crohn's disease (CD) and ulcerative colitis (UC), is chronic and relapsing inflammatory disorders of the gastrointestinal tract, which treatment options remain limited. Here we examined the therapeutic effects of an isoquinoline alkaloid, Palmatine (Pal), on mice experimental colitis induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Colitis was induced in BALB/c mice by administering 3% DSS in drinking water for 7 days. Pal (50 and 100 mg kg-1) and the positive drug Sulfasalazine (SASP, 200 mg kg-1) were orally administered for 7 days. Disease activity index (DAI) was evaluated on day 8, and colonic tissues were collected for biochemistry analysis. The fecal microbiota was characterized by high-throughput Illumina MiSeq sequencing. And plasma metabolic changes were detected by UPLC-MS. Our results showed that Pal treatment significantly reduced DAI scores and ameliorated colonic injury in mice with DSS-induced colitis. Mucosal integrity was improved and cell apoptosis was inhibited. Moreover, gut microbiota analysis showed that mice received Pal-treatment have higher relative abundance of Bacteroidetes and Firmicutes, but reduced amount of Proteobacteria. Moreover, Pal not only suppressed tryptophan catabolism in plasma, but also decreased the protein expression of indoleamine 2,3-dioxygenase 1 (IDO-1, the rate-limiting enzyme of tryptophan catabolism) in colon tissue. This is consolidated by molecular docking, which suggested that Pal is a potent IDO-1 inhibitor. Taken together, our findings demonstrate that Pal ameliorated DSS-induced colitis by mitigating colonic injury, preventing gut microbiota dysbiosis, and regulating tryptophan catabolism, which indicated that Pal has great therapeutic potential for colitis.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Alcaloides de Berberina/farmacología , Alcaloides de Berberina/uso terapéutico , Colitis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Triptófano/metabolismo , Animales , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos BALB C , Mucinas/genética , Proteínas de Uniones Estrechas/genética
2.
Mediators Inflamm ; 2017: 1089028, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28811678

RESUMEN

According to the GC-MS analysis, compositional variation was observed between samples of patchouli oil, of which an unknown compound identified as patchoulene epoxide (PAO) was found only in the long-stored oil, whose biological activity still remains unknown. Therefore, the present study aimed to evaluate the potential anti-inflammatory activity with three in vivo inflammatory models: xylene-induced ear edema, acetic acid-induced vascular permeability, and carrageenan-induced paw edema. Further investigation into its underlying mechanism on carrageenan-induced paw edema was conducted. Results demonstrated that PAO significantly inhibited the ear edema induced by xylene, lowered vascular permeability induced by acetic acid and decreased the paw edema induced by carrageenan. Moreover, PAO markedly decreased levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO), but increased levels of interleukin-4 (IL-4) and interleukin-10 (IL-10). PAO was also shown to significantly downregulate the protein and mRNA expressions of cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase (iNOS). Western blot analysis revealed that PAO remarkably inhibited p50 and p65 translocation from the cytosol to the nucleus by suppressing IKKß and IκBα phosphorylation. In conclusion, PAO exhibited potent anti-inflammatory activity probably by suppressing the activation of iNOS, COX-2 and NF-κB signaling pathways.


Asunto(s)
Compuestos Epoxi/uso terapéutico , Inflamación/tratamiento farmacológico , Aceites de Plantas/química , Pogostemon/química , Animales , Carragenina/toxicidad , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Compuestos Epoxi/química , Femenino , Cromatografía de Gases y Espectrometría de Masas , Inflamación/inducido químicamente , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Chin Med ; 19(1): 81, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858762

RESUMEN

BACKGROUND: Psoriasis is a long-term inflammatory skin disease. A novel herbal formula containing nine Chinese herbal medicines, named Inflammation Skin Disease Formula (ISDF), has been prescribed in clinics for decades. AIMS: To investigate the efficacy and action mechanisms of ISDF on psoriasis using imiquimod (IMQ) and Interleukin-23 (IL-23)-induced models in mice and reveal the pharmacokinetics profile of ISDF in rats. METHODS: Topical administration of IMQ and intradermal injection with IL-23 respectively induced skin lesions like psoriasis on the dorsal area of Balb/c and C57 mice. The mice's body weight, skin thickness, and psoriasis area and severity index (PASI) were assessed weekly. SD rats were used in the pharmacokinetics study and the contents of berberine and baicalin were determined. RESULTS: The PASI scores and epidermal thickness of mice were markedly decreased after ISDF treatment in both models. ISDF treatment significantly decreased the contents of IL-17A and IL-22 in the serum of IMQ- and IL-23-treated mice. Importantly, ISDF markedly downregulated IL-4, IL-6, IL-1ß, and tumor necrosis factor α (TNF-α) gene expression, and the phosphorylation of NF-κB p65, JNK, ERKs and MAPK p38 in IMQ-treated mice. The protein phosphorylation of Jak1, Jak2, Tyk2 and Stat3 was significantly mitigated in the ISDF-treated groups. The absorption of baicalin and berberine of ISDF through the gastrointestinal tract of rats was limited, and their distribution and metabolism in rats were also very slow, which suggested ISDF could be used in the long-term application. CONCLUSIONS: ISDF has a strong anti-psoriatic therapeutic effect on mouse models induced with psoriasis through IMQ and IL-23, which is achieved by inhibiting the activation of the Jak/Stat3-activated IL-23/Th17 axis and the downstream NF-κB signalling and MAPK signalling pathways. ISDF holds great potential to be a therapy for psoriasis and should be further developed for this purpose.

4.
Bone Joint Res ; 13(2): 66-82, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38310924

RESUMEN

Aims: This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Methods: Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization. Results: A total of 46 genes were obtained from the intersection of significantly upregulated genes in osteoarthritic cartilage and the key module genes screened by WGCNA. Functional annotation analysis revealed that these genes were closely related to pathological responses associated with OA, such as inflammation and immunity. Four key dysregulated genes (cartilage acidic protein 1 (CRTAC1), iodothyronine deiodinase 2 (DIO2), angiopoietin-related protein 2 (ANGPTL2), and MAGE family member D1 (MAGED1)) were identified after using machine-learning algorithms. These genes had high diagnostic value in both the training cohort and external validation cohort (receiver operating characteristic > 0.8). The upregulated expression of these hub genes in osteoarthritic cartilage signified higher levels of immune infiltration as well as the expression of metalloproteinases and mineralization markers, suggesting harmful biological alterations and indicating that these hub genes play an important role in the pathogenesis of OA. A competing endogenous RNA network was constructed to reveal the underlying post-transcriptional regulatory mechanisms. Conclusion: The current study explores and validates a dysregulated key gene set in osteoarthritic cartilage that is capable of accurately diagnosing OA and characterizing the biological alterations in osteoarthritic cartilage; this may become a promising indicator in clinical decision-making. This study indicates that dysregulated key genes play an important role in the development and progression of OA, and may be potential therapeutic targets.

5.
Int J Biol Sci ; 19(10): 3029-3041, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416770

RESUMEN

Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates redox homeostasis, plays a pivotal role in several cellular processes such as cell proliferation and survival, and has been found to be aberrantly activated in many cancers. As one of the key oncogenes, Nrf2 represents an important therapeutic target for cancer treatment. Research has unraveled the main mechanisms underlying the Nrf2 pathway regulation and the role of Nrf2 in promoting tumorigenesis. Many efforts have been made to develop potent Nrf2 inhibitors, and several clinical trials are being conducted on some of these inhibitors. Natural products are well-recognized as a valuable source for development of novel therapeutics for cancer. So far, a number of natural compounds have been identified as Nrf2 inhibitors, such as apigenin, luteolin, and quassinoids compounds including brusatol and brucein D. These Nrf2 inhibitors have been found to mediate an oxidant response and display therapeutic effects in different types of human cancers. In this article, we reviewed the structure and function of the Nrf2/Keap1 system and the development of natural Nrf2 inhibitors with an emphasis on their biological function on cancer. The current status regarding the Nrf2 as a potential therapeutic target for cancer treatment was also summarized. It is hoped that this review will stimulate research on naturally occurring Nrf2 inhibitors as therapeutic candidates for cancer treatment.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias/tratamiento farmacológico , Oxidación-Reducción , Carcinogénesis
6.
Front Pharmacol ; 13: 853119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370639

RESUMEN

Brucea javanica (Ya-dan-zi in Chinese) is a well-known Chinese herbal medicine, which is traditionally used in Chinese medicine for the treatment of intestinal inflammation, diarrhea, malaria, and cancer. The formulation of the oil (Brucea javanica oil) has been widely used to treat various types of cancer. It has also been found that B. javanica is rich in chemical constituents, including quassinoids, triterpenes, alkaloids and flavonoids. Pharmacological studies have revealed that chemical compounds derived from B. javanica exhibit multiple bioactivities, such as anti-cancer, anti-bacterial, anti-diabetic, and others. This review provides a comprehensive summary on the pharmacological properties of the main chemical constituents presented in B. javanica and their underlying molecular mechanisms. Moreover, the review will also provide scientific references for further research and development of B. javanica and its chemical constituents into novel pharmaceutical products for disease management.

7.
Phytomedicine ; 85: 153550, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33831691

RESUMEN

BACKGROUND: Berberine (BBR) has been widely used to treat non-alcoholic fatty liver disease (NAFLD). The metabolites of BBR were believed to contribute significantly to its pharmacological effects. Oxyberberine (OBB), a gut microbiota-mediated oxidative metabolite of BBR, has been firstly identified in our recent work. PURPOSE: Here, we aimed to comparatively investigate the anti-NAFLD properties of OBB and BBR. METHODS: The anti-NAFLD effect was evaluated in high-fat diet-induced obese NAFLD rats with biochemical/ELISA tests and histological staining. The related gene and protein expressions were detected by qRT-PCR and Western blotting respectively. Molecular docking and dynamic simulation were also performed to provide further insight. RESULTS: Results indicated OBB remarkably and dose-dependently attenuated the clinical manifestations of NAFLD, which (100 mg/kg) achieved similar therapeutic effect to metformin (300 mg/kg) and was superior to BBR of the same dose. OBB significantly inhibited aberrant phosphorylation of IRS-1 and up-regulated the downstream protein expression and phosphorylation (PI3K, p-Akt/Akt and p-GSK-3ß/GSK-3ß) to improve hepatic insulin signal transduction. Meanwhile, OBB treatment remarkably alleviated inflammation via down-regulating the mRNA expression of MCP-1, Cd68, Nos2, Cd11c, while enhancing Arg1 mRNA expression in white adipose tissue. Moreover, OBB exhibited closer affinity with AMPK in silicon and superior hyperphosphorylation of AMPK in vivo, leading to increased ACC mRNA expression in liver and UCP-1 protein expression in adipose tissue. CONCLUSION: Taken together, compared with BBR, OBB was more capable of maintaining lipid homeostasis between liver and WAT via attenuating hepatic insulin pathway and adipocyte inflammation, which was associated with its property of superior AMPK activator.


Asunto(s)
Berberina/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Dieta Alta en Grasa , Homeostasis , Inflamación/tratamiento farmacológico , Insulina/metabolismo , Hígado/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular , Obesidad , Oxidación-Reducción , Fosforilación , Proteínas Quinasas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
8.
Biomed Pharmacother ; 114: 108766, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30901719

RESUMEN

Brucea javanica is an important Chinese folk medicine traditionally used for the treatment of dysentery (also known as inflammatory bowel diseases). Brucea javanica oil emulsion (BJOE), the most common preparation of Brucea javanica, has a variety of pharmacological activities. In this follow-up investigation, we endeavored to illuminate the potential benefit of BJOE on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced Crohn's disease (CD) in rats and decipher the mechanism of action. The result illustrated that BJOE treatment significantly reduced the body weight loss, disease activity index and macroscopic scores, ameliorated shortening of colon length, arrested colonic histopathological deteriorations, lowered the histological scores in parallel to the model group. Furthermore, BJOE also decreased the levels of MPO and pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-17, IL-23 and IFN-γ), and increased the levels of anti-inflammatory cytokines (IL-4, IL-10 and TGF-ß) as compared with the model group. In addition, the elevated mRNA expression of MMP-1, MMP-3 and RAGE induced by TNBS was remarkably inhibited by BJOE, SASP or AZA treatments, while the mRNA expression of PPAR-γ was significantly enhanced. Furthermore, the activation of TLR4/NF-κB signaling pathway was significantly inhibited by AZA and BJOE treatment when compared with that of TNBS-treated rats. Our study suggested that BJOE exerted superior therapeutic effect to SASP and AZA in treating TNBS-induced colitis in rats. The protective effect of BJOE may involve the inhibition of the TLR4/NF-κB-mediated inflammatory responses. These results indicated that BJOE held promising potential to be further developed into a novel candidate for the treatment of CD.


Asunto(s)
Brucea/química , Enfermedad de Crohn/tratamiento farmacológico , Emulsiones/farmacología , FN-kappa B/metabolismo , Aceites de Plantas/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Animales , Colon/efectos de los fármacos , Colon/metabolismo , Enfermedad de Crohn/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley
9.
Int J Nanomedicine ; 13: 5887-5907, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319255

RESUMEN

BACKGROUND: Bruceine D (BD) is a major bioactive component isolated from the traditional Chinese medicinal plant Brucea javanica which has been widely utilized to treat dysentery (also known as ulcerative colitis [UC]). METHODS: To improve the water solubility and absolute bioavailability of BD, we developed a self-nanoemulsifying drug delivery system (SNEDDS) composing of MCT (oil), Solutol HS-15 (surfactant), propylene glycol (co-surfactant) and BD. The physicochemical properties and pharmacokinetics of BD-SNEDDS were characterized, and its anti-UC activity and potential mechanism were evaluated in TNBS-induced UC rat model. RESULTS: The prepared nanoemulsion has multiple beneficial aspects including small mean droplet size, low polydispersity index (PDI), high zeta potential (ZP) and excellent stability. Transmission electron microscopy showed that nanoemulsion droplets contained uniform shape and size of globules. Pharmacokinetic studies demonstrated that BD-SNEDDS exhibited enhanced pharmacokinetic parameters as compared with BD-suspension. Moreover, BD-SNEDDS significantly restored the colon length and body weight, reduced disease activity index (DAI) and colon pathology, decreased histological scores, diminished oxidative stress, and suppressed TLR4, MyD88, TRAF6, NF-κB p65 protein expressions in TNBS-induced UC rat model. CONCLUSION: These results demonstrated that BD-SNEDDS exhibited highly improved oral bioavailability and advanced anti-UC efficacy. In conclusion, our current results provided a foundation for further research of BD-SNEDDS as a potential complementary therapeutic agent for UC treatment.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Cuassinas/uso terapéutico , Animales , Disponibilidad Biológica , Colitis Ulcerosa/patología , Liberación de Fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Nanopartículas/química , Nanopartículas/ultraestructura , Aceites/química , Tamaño de la Partícula , Transición de Fase , Cuassinas/química , Cuassinas/farmacocinética , Cuassinas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Solubilidad
10.
Mol Med Rep ; 17(1): 789-800, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29115625

RESUMEN

Silymarin has been used in the treatment of a number of liver diseases for a long time, but its efficacy in preventing triptolide induced acute hepatotoxicity has not been reported previously. The present study aimed to assess the protective effect of silymarin against triptolide (TP)-induced hepatotoxicity in rats. Rats were orally administrated with silymarin (50, 100 and 200 mg/kg) for 7 days and received intraperitoneal TP (2 mg/kg) on the day 8. Hepatic injuries were comprehensively evaluated in terms of serum parameters, morphological changes, oxidative damage, inflammation and apoptosis. The results demonstrated that TP-induced increases in serum parameters, including alanine transaminase, aspartate aminotransferase, alkaline phosphatase, total cholesterol and γ-glutamyl transpeptidase, which were determined using a biochemical analyzer, and histopathological alterations and hepatocyte apoptosis as determined by hematoxylin and eosin and TUNEL staining, respectively, were prevented by silymarin pretreatment in a dose-dependent manner. TP-induced depletions in the activity of the antioxidant enzymes superoxide dismutase, glutathione peroxidase, glutathione S-transferase and catalase, and glutathione levels, were also significantly reversed by silymarin, as determined using specific kits. Additionally, silymarin dose-dependently exhibited inhibitory effects on malonaldehyde content in the liver. The production of proinflammatory cytokines was investigated using ELISA kits, and the results demonstrated that silymarin dose-dependently inhibited the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10 and IL-1ß in the liver. To determine the mechanism of silymarin, western blot analysis was performed to investigate the protein expression of phosphorylated (p)-p38 and p-c-Jun N-terminal kinase (JNK) of the TNF-α induced inflammatory response and apoptotic pathways. Silymarin significantly blocked p38 and JNK phosphorylation and activation. Additionally, the expression of the proapoptotic proteins cytochrome c, cleaved caspase-3 and Bcl-2-associated X was also reduced following treatment with silymarin, as determined by ELISA, western blotting and immunohistochemistry, respectively. In conclusion, silymarin was demonstrated to dose-dependently protect rat liver from TP-induced acute hepatotoxicity, with the high dose (200 mg/kg) achieving a superior effect. This protective effect may be associated with the improvement of antioxidant and anti-inflammatory status, as well as the prevention of hepatocyte apoptosis. Therefore, silymarin may have the potential to be applied clinically to prevent TP-induced acute hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Diterpenos/toxicidad , Fenantrenos/toxicidad , Sustancias Protectoras/farmacología , Silimarina/farmacología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Diterpenos/química , Compuestos Epoxi/química , Compuestos Epoxi/toxicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Mediadores de Inflamación/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Fenantrenos/química , Sustancias Protectoras/química , Ratas , Especies Reactivas de Oxígeno/metabolismo , Silimarina/química
11.
Phytomedicine ; 39: 111-118, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29433672

RESUMEN

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are most widely used as effective anti-inflammatory agents. However, their clinical application brings about inevasible gastrointestinal side effects. Pogostemon cablin is a traditional herbal medicine used for the treatment of gastrointestinal diseases in China. One of its representative components, the tricyclic triterpenoid ß-patchoulone (ß-PAE) has demonstrated great anti-inflammatory activity and gastroprotective effect against ethanol-induced gastric injury, but its protective effect against gastric ulcer induced by indomethacin is still unknown. PURPOSE: To assess the protective effect of ß-PAE against ulcer produced by indomethacin and reveal the underlying pharmacological mechanism. STUDY DESIGN: We used an indomethacin-induced gastric ulcer model of rats in vivo. METHODS: Gastroprotective activity of ß-PAE (10, 20, 40 mg/kg, i.g.) was estimated via indomethacin-induced gastric ulcer model in rats. Histopathological and histochemical assessment of ulcerated tissues were performed. Protein and mRNA expression were determined by Elisa, Western blotting and qRT-PCR. RESULTS: ß-PAE could inhibit ulcer formation. Histopathological and histochemical assessment macroscopically demonstrated that ß-PAE alleviates indomethacin-induced gastric ulceration in dose-dependent manner. After administration of ß-PAE, elevated tumor necrosis factor -α level was significantly decreased and the phosphorylation of JNK and IκB was markedly inhibited. ß-PAE suppressed the levels of E-selectin, P-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule and monocyte chemoattractant protein 1, as well as myeloperoxidase. Meanwhile, ß-PAE increased cyclooxygenase enzyme activities (COX-1 and COX-2) to enhance the production of prostaglandin E2. Proangiogenic protein, vascular endothelial growth factor and its receptor fms-like tyrosine kinase-1 mRNA expression were promoted while anti-angiogenic protein, endostatin-1 and its receptor ETAR mRNA expression were decreased. CONCLUSION: ß-PAE may provide gastroprotection in indomethacin-induced gastric ulcer in rats by reducing inflammatory response and improving angiogenesis.


Asunto(s)
Indometacina/efectos adversos , Sustancias Protectoras/farmacología , Sesquiterpenos/farmacología , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Inductores de la Angiogénesis/farmacología , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Antiulcerosos/farmacología , Dinoprostona/metabolismo , Medicamentos Herbarios Chinos/farmacología , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Masculino , Pogostemon/química , Ratas Sprague-Dawley , Sesquiterpenos de Guayano , Úlcera Gástrica/patología , Factor de Necrosis Tumoral alfa/metabolismo
12.
Int Immunopharmacol ; 50: 270-278, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28711783

RESUMEN

ß-Patchoulene (ß-PAE), a tricyclic sesquiterpene isolated from the essential oil of the leaves and stems of Pogostemon cablin (Blanco) Benth., has been reported to have potent anti-inflammatory activity. The aim of this study was to evaluate the potential protective effect of ß-PAE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and to illuminate the underlying mechanisms. ALI was induced by intracheal instillation of LPS into lung, and dexamethasone (DEX) was used as a positive control. Results indicated that pretreatment with ß-PAE significantly decreased the mortality rate of mice and lung W/D weight ratio, ameliorated lung pathological changes as compared to model group. Meanwhile, ß-PAE pretreatment markedly inhibited the increase of TNF-α, IL-6 and IL-1ß secretions in the bronchoalveolar lavage fluid, and prevented LPS-induced elevations of MPO activity and MDA level in the lung. Additionally, ß-PAE pretreatment significantly elevated miR-146a expression and suppressed the LPS-induced activation of NF-κB and expression of its mediated genes (TNF-α, IL-6 and IL-1ß). ß-PAE was also observed to markedly upregulate the Nrf2 and HO-1 expression and activate the antioxidant genes (NQO-1, GCLC and HO-1). Taken together, ß-PAE possessed protective effect against LPS-induced ALI, which might be associated with its differential regulation of NF-κB and Nrf2 activities and up-regulation of expression of miR-146a. The results rendered ß-PAE a promising anti-inflammatory agent worthy of further development into a pharmaceutical drug for the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Pulmón/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sesquiterpenos/uso terapéutico , Animales , Citocinas/metabolismo , Dexametasona/inmunología , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Pulmón/efectos de los fármacos , Pulmón/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos , MicroARNs/genética , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/metabolismo , Peroxidasa/metabolismo , Pogostemon/inmunología , Sesquiterpenos de Guayano , Transducción de Señal
13.
J Ethnopharmacol ; 198: 389-398, 2017 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-28119098

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Brucea javanica is an important traditional medicinal herb used for the treatment of dysentery, malaria, inflammation and cancer in southeast Asia for many years. However, the anti-inflammatory mechanism of Brucea javanica in the treatment of dysentery (also known as ulcerative colitis, UC) has not been fully illuminated. Brucea javanica oil emulsion (BJOE) is the major active and most common application form of Brucea javanica oil (BJO), which has a variety of pharmacological activities. The aim of this study was to investigate the potential anti-inflammatory effect of BJOE and possible mechanism of action on dextran sulfate sodium (DSS)-induced UC in mice. MATERIALS AND METHODS: The components of BJOE were determined by gas chromatography-mass spectrometry (GC-MS). Balb/C mice with dextran sulfate sodium (DSS, 30mg/mL) induced colitis were treated with BJOE (0.5, 1 and 2g/kg) and two positive drugs (sulfasalazine, SASP, 200mg/kg; and azathioprine, AZA, 13mg/kg) once daily by gavage for 7 days. Mice in normal control group and DSS group were orally given the same volume of distilled water and soybean lecithin suspension (0.15g/kg) respectively. The effects of BJOE on DSS-induced UC were assessed by determination of body weight loss, disease activity index (DAI), colon length, histological analysis, as well as levels of pro-inflammatory cytokines. The mRNA expression of MPO, iNOS and COX-2 in colon tissues was detected by qRT-PCR. In addition, NF-κB p65, p-p65 and IκB-α, p-IκBα protein expression levels in colon tissues were investigated using Western blotting. RESULTS: The major components of BJOE were found to be oleic acid (62.68%) and linoleic acid (19.53%) as detected by GC-MS. Our results indicated that BJOE, SASP and AZA showed beneficial effect on DSS-induced colitis in mice, and significantly reduced the body weight loss and DAI, restored the colon length, repaired colonic pathological variations, decreased histological scores, and decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-8, IL-17 and IFN-γ) as compared with the DSS group. In addition, the mRNA expression of MPO, iNOS and COX-2 induced by DSS treatment was remarkably inhibited by BJOE, SASP or AZA treatments. Furthermore, when compared with DSS-treated mice, the activation of NF-κB was significantly inhibited by AZA and BJOE treatment. CONCLUSIONS: Our study shows that BJOE possessed appreciable anti-inflammatory effect against murine experimental UC induced by DSS. The protective mechanism of BJOE may involve inhibition of NF-κB signal transduction pathways and subsequent down-regulation of inflammatory mediators. These findings suggest that BJOE might be an efficacious and promising therapeutic approach for the treatment of UC. Our investigation might also provide experimental evidence for the traditional application of Brucea javanica in the treatment of dysentery and might add new dimension to the clinical indications for BJOE.


Asunto(s)
Antiinflamatorios/farmacología , Brucea/química , Colitis Ulcerosa/tratamiento farmacológico , Aceites de Plantas/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Azatioprina/farmacología , Colitis Ulcerosa/patología , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Emulsiones , Cromatografía de Gases y Espectrometría de Masas , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfasalazina/farmacología
14.
PLoS One ; 12(1): e0168944, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28045966

RESUMEN

In this paper, we evaluated the anti-Helicobacter pylori activity and the possible inhibitory effect on its associated urease by Palmatine (Pal) from Coptis chinensis, and explored the potential underlying mechanism. Results indicated that Pal exerted inhibitory effect on four tested H. pylori strains (ATCC 43504, NCTC 26695, SS1 and ICDC 111001) by the agar dilution test with minimum inhibitory concentration (MIC) values ranging from 100 to 200 µg/mL under neutral environment (pH 7.4), and from 75 to 100 µg/mL under acidic conditions (pH 5.3), respectively. Pal was observed to significantly inhibit both H. pylori urease (HPU) and jack bean urease (JBU) in a dose-dependent manner, with IC50 values of 0.53 ± 0.01 mM and 0.03 ± 0.00 mM, respectively, as compared with acetohydroxamic acid, a well-known urease inhibitor (0.07 ± 0.01 mM for HPU and 0.02 ± 0.00 mM for JBU, respectively). Kinetic analyses showed that the type of urease inhibition by Pal was noncompetitive for both HPU and JBU. Higher effectiveness of thiol protectors against urease inhibition than the competitive Ni2+ binding inhibitors was observed, indicating the essential role of the active-site sulfhydryl group in the urease inhibition by Pal. DTT reactivation assay indicated that the inhibition on the two ureases was reversible, further supporting that sulfhydryl group should be obligatory for urease inhibition by Pal. Furthermore, molecular docking study indicated that Pal interacted with the important sulfhydryl groups and inhibited the active enzymatic conformation through N-H ∙ π interaction, but did not interact with the active site Ni2+. Taken together, Pal was an effective inhibitor of H. pylori and its urease targeting the sulfhydryl groups, representing a promising candidate as novel urease inhibitor. This investigation also gave additional scientific support to the use of C. chinensis to treat H. pylori-related gastrointestinal diseases in traditional Chinese medicine. Pal might be a potentially beneficial therapy for gastritis and peptic ulcers induced by H. pylori infection and other urease-related diseases.


Asunto(s)
Antibacterianos/farmacología , Alcaloides de Berberina/farmacología , Coptis/química , Enfermedades Gastrointestinales/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Ureasa/antagonistas & inhibidores , Dominio Catalítico , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/enzimología , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Níquel/química , Extractos Vegetales/metabolismo , Especificidad de la Especie , Compuestos de Sulfhidrilo/química , Ureasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA