RESUMEN
As belonging to one of the most isolated continents on our planet, the microbial composition of different environments in Antarctica could hold a plethora of undiscovered species with the potential for biotechnological applications. This manuscript delineates our discoveries after an expedition to the Bulgarian Antarctic Base "St. Kliment Ohridski" situated on Livingston Island, Antarctica. Amplicon-based metagenomics targeting the 16S rRNA genes and ITS2 region were employed to assess the metagenomes of the bacterial, fungal, and archaeal communities across diverse sites within and proximal to the research station. The predominant bacterial assemblages identified included Oxyphotobacteria, Bacteroidia, Gammaprotobacteria, and Alphaprotobacteria. A substantial proportion of cyanobacteria reads were attributed to a singular uncultured taxon within the family Leptolyngbyaceae. The bacterial profile of a lagoon near the base exhibited indications of penguin activity, characterized by a higher abundance of Clostridia, similar to lithotelm samples from Hannah Pt. Although most fungal reads in the samples could not be identified at the species level, noteworthy genera, namely Betamyces and Tetracladium, were identified. Archaeal abundance was negligible, with prevalent groups including Woesearchaeales, Nitrosarchaeum, Candidatus Nitrosopumilus, and Marine Group II.
RESUMEN
Antarctica represents a unique environment, both due to the extreme meteorological and geological conditions that govern it and the relative isolation from human influences that have kept its environment largely undisturbed. However, recent trends in climate change dictate an unavoidable change in the global biodiversity as a whole, and pristine environments, such as Antarctica, allow us to study and monitor more closely the effects of the human impact. Additionally, due to its inaccessibility, Antarctica contains a plethora of yet uncultured and unidentified microorganisms with great potential for useful biological activities and production of metabolites, such as novel antibiotics, proteins, pigments, etc. In recent years, amplicon-based next-generation sequencing (NGS) has allowed for a fast and thorough examination of microbial communities to accelerate the efforts of unknown species identification. For these reasons, in this review, we present an overview of the archaea, bacteria, and fungi present on the Antarctic continent and the surrounding area (maritime Antarctica, sub-Antarctica, Southern Sea, etc.) that have recently been identified using amplicon-based NGS methods.