Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 28(13): 1775-82, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22563067

RESUMEN

MOTIVATION: Rapid advances in biomedical sciences and genetics have increased the pressure on drug development companies to promptly translate new knowledge into treatments for disease. Impelled by the demand and facilitated by technological progress, the number of compounds evaluated during the initial high-throughput screening (HTS) step of drug discovery process has steadily increased. As a highly automated large-scale process, HTS is prone to systematic error caused by various technological and environmental factors. A number of error correction methods have been designed to reduce the effect of systematic error in experimental HTS (Brideau et al., 2003; Carralot et al., 2012; Kevorkov and Makarenkov, 2005; Makarenkov et al., 2007; Malo et al., 2010). Despite their power to correct systematic error when it is present, the applicability of those methods in practice is limited by the fact that they can potentially introduce a bias when applied to unbiased data. We describe two new methods for eliminating systematic error from HTS data based on a prior knowledge of the error location. This information can be obtained using a specific version of the t-test or of the χ(2) goodness-of-fit test as discussed in Dragiev et al. (2011). We will show that both new methods constitute an important improvement over the standard practice of not correcting for systematic error at all as well as over the B-score correction procedure (Brideau et al., 2003) which is widely used in the modern HTS. We will also suggest a more general data preprocessing framework where the new methods can be applied in combination with the Well Correction procedure (Makarenkov et al., 2007). Such a framework will allow for removing systematic biases affecting all plates of a given screen as well as those relative to some of its individual plates.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Simulación por Computador , Descubrimiento de Drogas
2.
BMC Bioinformatics ; 12: 25, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21247425

RESUMEN

BACKGROUND: High-throughput screening (HTS) is a key part of the drug discovery process during which thousands of chemical compounds are screened and their activity levels measured in order to identify potential drug candidates (i.e., hits). Many technical, procedural or environmental factors can cause systematic measurement error or inequalities in the conditions in which the measurements are taken. Such systematic error has the potential to critically affect the hit selection process. Several error correction methods and software have been developed to address this issue in the context of experimental HTS 1234567. Despite their power to reduce the impact of systematic error when applied to error perturbed datasets, those methods also have one disadvantage - they introduce a bias when applied to data not containing any systematic error 6. Hence, we need first to assess the presence of systematic error in a given HTS assay and then carry out systematic error correction method if and only if the presence of systematic error has been confirmed by statistical tests. RESULTS: We tested three statistical procedures to assess the presence of systematic error in experimental HTS data, including the χ2 goodness-of-fit test, Student's t-test and Kolmogorov-Smirnov test 8 preceded by the Discrete Fourier Transform (DFT) method 9. We applied these procedures to raw HTS measurements, first, and to estimated hit distribution surfaces, second. The three competing tests were applied to analyse simulated datasets containing different types of systematic error, and to a real HTS dataset. Their accuracy was compared under various error conditions. CONCLUSIONS: A successful assessment of the presence of systematic error in experimental HTS assays is possible when the appropriate statistical methodology is used. Namely, the t-test should be carried out by researchers to determine whether systematic error is present in their HTS data prior to applying any error correction method. This important step can significantly improve the quality of selected hits.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento/métodos , Interpretación Estadística de Datos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA