Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Chem Inf Model ; 57(9): 2161-2172, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28812890

RESUMEN

Engineered nanomaterials (ENMs) are increasingly infiltrating our lives as a result of their applications across multiple fields. However, ENM formulations may result in the modulation of pathways and mechanisms of toxic action that endanger human health and the environment. Alternative testing methods such as in silico approaches are becoming increasingly popular for assessing the safety of ENMs, as they are cost- and time-effective. Additionally, computational approaches support the industrial safer-by-design challenge and the REACH legislation objective of reducing animal testing. Because of the novelty of the field, there is also an evident need for harmonization in terms of databases, ontology, and modeling infrastructures. To this end, we present Jaqpot Quattro, a comprehensive open-source web application for ENM modeling with emphasis on predicting adverse effects of ENMs. We describe the system architecture and outline the functionalities, which include nanoQSAR modeling, validation services, read-across predictions, optimal experimental design, and interlaboratory testing.


Asunto(s)
Informática/métodos , Internet , Nanoestructuras/efectos adversos , Ingeniería , Nanoestructuras/química , Relación Estructura-Actividad , Interfaz Usuario-Computador
2.
Curr Protoc Chem Biol ; 11(3): e73, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31483099

RESUMEN

The modes of action (MoAs) of drugs frequently are unknown, because many are small molecules initially identified from phenotypic screens, giving rise to the need to elucidate their MoAs. In addition, the high attrition rate for candidate drugs in preclinical studies due to intolerable toxicity has motivated the development of computational approaches to predict drug candidate (cyto)toxicity as early as possible in the drug-discovery process. Here, we provide detailed instructions for capitalizing on bioactivity predictions to elucidate the MoAs of small molecules and infer their underlying phenotypic effects. We illustrate how these predictions can be used to infer the underlying antidepressive effects of marketed drugs. We also provide the necessary functionalities to model cytotoxicity data using single and ensemble machine-learning algorithms. Finally, we give detailed instructions on how to calculate confidence intervals for individual predictions using the conformal prediction framework. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Aprendizaje Automático , Preparaciones Farmacéuticas/metabolismo , Bases de Datos Factuales , Concentración 50 Inhibidora , Bibliotecas de Moléculas Pequeñas/metabolismo
3.
ACS Chem Biol ; 12(6): 1593-1602, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28414209

RESUMEN

In this work, we describe the computational ("in silico") mode-of-action analysis of CNS-active drugs, which is taking both multiple simultaneous hypotheses as well as sets of protein targets for each mode-of-action into account, and which was followed by successful prospective in vitro and in vivo validation. Using sleep-related phenotypic readouts describing both efficacy and side effects for 491 compounds tested in rat, we defined an "optimal" (desirable) sleeping pattern. Compounds were subjected to in silico target prediction (which was experimentally confirmed for 21 out of 28 cases), followed by the utilization of decision trees for deriving polypharmacological bioactivity profiles. We demonstrated that predicted bioactivities improved classification performance compared to using only structural information. Moreover, DrugBank molecules were processed via the same pipeline, and compounds in many cases not annotated as sedative-hypnotic (alcaftadine, benzatropine, palonosetron, ecopipam, cyproheptadine, sertindole, and clopenthixol) were prospectively validated in vivo. Alcaftadine, ecopipam cyproheptadine, and clopenthixol were found to promote sleep as predicted, benzatropine showed only a small increase in NREM sleep, whereas sertindole promoted wakefulness. To our knowledge, the sedative-hypnotic effects of alcaftadine and ecopipam have not been previously discussed in the literature. The method described extends previous single-target, single-mode-of-action models and is applicable across disease areas.


Asunto(s)
Hipnóticos y Sedantes/farmacología , Polifarmacología , Animales , Benzazepinas/farmacología , Investigación Biomédica/métodos , Simulación por Computador , Hipnóticos y Sedantes/clasificación , Imidazoles/farmacología , Ratas
4.
Artículo en Inglés | MEDLINE | ID: mdl-27074759

RESUMEN

Decision trees are renowned in the computational chemistry and machine learning communities for their interpretability. Their capacity and usage are somewhat limited by the fact that they normally work on categorical data. Improvements to known decision tree algorithms are usually carried out by increasing and tweaking parameters, as well as the post-processing of the class assignment. In this work we attempted to tackle both these issues. Firstly, conditional mutual information was used as the criterion for selecting the attribute on which to split instances. The algorithm performance was compared with the results of C4.5 (WEKA's J48) using default parameters and no restrictions. Two datasets were used for this purpose, DrugBank compounds for HRH1 binding prediction and Traditional Chinese Medicine formulation predicted bioactivities for therapeutic class annotation. Secondly, an automated binning method for continuous data was evaluated, namely Scott's normal reference rule, in order to allow any decision tree to easily handle continuous data. This was applied to all approved drugs in DrugBank for predicting the RDKit SLogP property, using the remaining RDKit physicochemical attributes as input.


Asunto(s)
Algoritmos , Árboles de Decisión , Conjuntos de Datos como Asunto/clasificación , Conjuntos de Datos como Asunto/normas , Medicina Tradicional China/métodos , Preparaciones Farmacéuticas/clasificación
5.
Artículo en Inglés | MEDLINE | ID: mdl-26989424

RESUMEN

Traditional Chinese medicine (TCM) still needs more scientific rationale to be proven for it to be accepted further in the West. We are now in the position to propose computational hypotheses for the mode-of-actions (MOAs) of 45 TCM therapeutic action (sub)classes from in silico target prediction algorithms, whose target was later annotated with Kyoto Encyclopedia of Genes and Genomes pathway, and to discover the relationship between them by generating a hierarchical clustering. The results of 10,749 TCM compounds showed 183 enriched targets and 99 enriched pathways from Estimation Score ≤ 0 and ≥ 5% of compounds/targets in a (sub)class. The MOA of a (sub)class was established from supporting literature. Overall, the most frequent top three enriched targets/pathways were immune-related targets such as tyrosine-protein phosphatase nonreceptor type 2 (PTPN2) and digestive system such as mineral absorption. We found two major protein families, G-protein coupled receptor (GPCR), and protein kinase family contributed to the diversity of the bioactivity space, while digestive system was consistently annotated pathway motif, which agreed with the important treatment principle of TCM, "the foundation of acquired constitution" that includes spleen and stomach. In short, the TCM (sub)classes, in many cases share similar targets/pathways despite having different indications.

6.
J Cheminform ; 7: 51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500705

RESUMEN

BACKGROUND: In silico analyses are increasingly being used to support mode-of-action investigations; however many such approaches do not utilise the large amounts of inactive data held in chemogenomic repositories. The objective of this work is concerned with the integration of such bioactivity data in the target prediction of orphan compounds to produce the probability of activity and inactivity for a range of targets. To this end, a novel human bioactivity data set was constructed through the assimilation of over 195 million bioactivity data points deposited in the ChEMBL and PubChem repositories, and the subsequent application of a sphere-exclusion selection algorithm to oversample presumed inactive compounds. RESULTS: A Bernoulli Naïve Bayes algorithm was trained using the data and evaluated using fivefold cross-validation, achieving a mean recall and precision of 67.7 and 63.8 % for active compounds and 99.6 and 99.7 % for inactive compounds, respectively. We show the performances of the models are considerably influenced by the underlying intraclass training similarity, the size of a given class of compounds, and the degree of additional oversampling. The method was also validated using compounds extracted from WOMBAT producing average precision-recall AUC and BEDROC scores of 0.56 and 0.85, respectively. Inactive data points used for this test are based on presumed inactivity, producing an approximated indication of the true extrapolative ability of the models. A distance-based applicability domain analysis was also conducted; indicating an average Tanimoto Coefficient distance of 0.3 or greater between a test and training set can be used to give a global measure of confidence in model predictions. A final comparison to a method trained solely on active data from ChEMBL performed with precision-recall AUC and BEDROC scores of 0.45 and 0.76. CONCLUSIONS: The inclusion of inactive data for model training produces models with superior AUC and improved early recognition capabilities, although the results from internal and external validation of the models show differing performance between the breadth of models. The realised target prediction protocol is available at https://github.com/lhm30/PIDGIN.Graphical abstractThe inclusion of large scale negative training data for in silico target prediction improves the precision and recall AUC and BEDROC scores for target models.

7.
Comb Chem High Throughput Screen ; 18(3): 323-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747441

RESUMEN

The increase of publicly available bioactivity data has led to the extensive development and usage of in silico bioactivity prediction algorithms. A particularly popular approach for such analyses is the multiclass Naïve Bayes, whose output is commonly processed by applying empirically-derived likelihood score thresholds. In this work, we describe a systematic way for deriving score cut-offs on a per-protein target basis and compare their performance with global thresholds on a large scale using both 5-fold cross-validation (ChEMBL 14, 189k ligand-protein pairs over 477 protein targets) and external validation (WOMBAT, 63k pairs, 421 targets). The individual protein target cut-offs derived were compared to global cut-offs ranging from -10 to 40 in score bouts of 2.5. The results indicate that individual thresholds had equal or better performance in all comparisons with global thresholds, ranging from 95% of protein targets to 57.96%. It is shown that local thresholds behave differently for particular families of targets (CYPs, GPCRs, Kinases and TFs). Furthermore, we demonstrate the discrepancy in performance when we move away from the training dataset chemical space, using Tanimoto similarity as a metric (from 0 to 1 in steps of 0.2). Finally, the individual protein score cut-offs derived for the in silico bioactivity application used in this work are released, as well as the reproducible and transferable KNIME workflows used to carry out the analysis.


Asunto(s)
Proteínas/química , Bibliotecas de Moléculas Pequeñas/química , Algoritmos , Teorema de Bayes , Humanos , Ligandos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología
8.
Mol Biosyst ; 11(1): 86-96, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25254964

RESUMEN

Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein-ligand binding. This paper spotlights the integration of gene expression data and target prediction scores, providing insight into mechanism of action (MoA). Compounds are clustered based upon the similarity of their predicted protein targets and each cluster is linked to gene sets using Linear Models for Microarray Data. MLP analysis is used to generate gene sets based upon their biological processes and a qualitative search is performed on the homogeneous target-based compound clusters to identify pathways. Genes and proteins were linked through pathways for 6 of the 8 MCF7 and 6 of the 11 PC3 clusters. Three compound clusters are studied; (i) the target-driven cluster involving HSP90 inhibitors, geldanamycin and tanespimycin induces differential expression for HSP90-related genes and overlap with pathway response to unfolded protein. Gene expression results are in agreement with target prediction and pathway annotations add information to enable understanding of MoA. (ii) The antipsychotic cluster shows differential expression for genes LDLR and INSIG-1 and is predicted to target CYP2D6. Pathway steroid metabolic process links the protein and respective genes, hypothesizing the MoA for antipsychotics. A sub-cluster (verepamil and dexverepamil), although sharing similar protein targets with the antipsychotic drug cluster, has a lower intensity of expression profile on related genes, indicating that this method distinguishes close sub-clusters and suggests differences in their MoA. Lastly, (iii) the thiazolidinediones drug cluster predicted peroxisome proliferator activated receptor (PPAR) PPAR-alpha, PPAR-gamma, acyl CoA desaturase and significant differential expression of genes ANGPTL4, FABP4 and PRKCD. The targets and genes are linked via PPAR signalling pathway and induction of apoptosis, generating a hypothesis for the MoA of thiazolidinediones. Our analysis show one or more underlying MoA for compounds and were well-substantiated with literature.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Descubrimiento de Drogas , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Transcriptoma , Algoritmos , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Antipsicóticos/farmacología , Línea Celular Tumoral , Análisis por Conglomerados , Bases de Datos Genéticas , Descubrimiento de Drogas/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Transducción de Señal
9.
Future Med Chem ; 6(18): 2029-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25531967

RESUMEN

BACKGROUND: An in silico mechanism-of-action analysis protocol was developed, comprising molecule bioactivity profiling, annotation of predicted targets with pathways and calculation of enrichment factors to highlight targets and pathways more likely to be implicated in the studied phenotype. RESULTS: The method was applied to a cytotoxicity phenotypic endpoint, with enriched targets/pathways found to be statistically significant when compared with 100 random datasets. Application on a smaller apoptotic set (10 molecules) did not allowed to obtain statistically relevant results, suggesting that the protocol requires modification such as analysis of the most frequently predicted targets/annotated pathways. CONCLUSION: Pathway annotations improved the mechanism-of-action information gained by target prediction alone, allowing a better interpretation of the predictions and providing better mapping of targets onto pathways.


Asunto(s)
Biología Computacional , Simulación por Computador , Bibliotecas de Moléculas Pequeñas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Ratones , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/toxicidad , Células Madre/citología , Células Madre/efectos de los fármacos
10.
Chem Biol Drug Des ; 82(3): 252-66, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23647865

RESUMEN

Diversity selection is a frequently applied strategy for assembling high-throughput screening libraries, making the assumption that a diverse compound set increases chances of finding bioactive molecules. Based on previous work on experimental 'affinity fingerprints', in this study, a novel diversity selection method is benchmarked that utilizes predicted bioactivity profiles as descriptors. Compounds were selected based on their predicted activity against half of the targets (training set), and diversity was assessed based on coverage of the remaining (test set) targets. Simultaneously, fingerprint-based diversity selection was performed. An original version of the method exhibited on average 5% and an improved version on average 10% increase in target space coverage compared with the fingerprint-based methods. As a typical case, bioactivity-based selection of 231 compounds (2%) from a particular data set ('Cutoff-40') resulted in 47.0% and 50.1% coverage, while fingerprint-based selection only achieved 38.4% target coverage for the same subset size. In conclusion, the novel bioactivity-based selection method outperformed the fingerprint-based method in sampling bioactive chemical space on the data sets considered. The structures retrieved were structurally more acceptable to medicinal chemists while at the same time being more lipophilic, hence bioactivity-based diversity selection of compounds would best be combined with physicochemical property filters in practice.


Asunto(s)
Algoritmos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Alcaloides de Berberina/química , Alcaloides de Berberina/metabolismo , Biología Computacional , Ensayos Analíticos de Alto Rendimiento , Unión Proteica , Proteínas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
11.
Mol Inform ; 32(11-12): 1009-24, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27481146

RESUMEN

The simultaneous increase of computational power and the availability of chemical and biological data have contributed to the recent popularity of in silico bioactivity prediction algorithms. Such methods are commonly used to infer the 'Mechanism of Action' of small molecules and they can also be employed in cases where full bioactivity profiles have not been established experimentally. However, protein target predictions by themselves do not necessarily capture information about the effect of a compound on a biological system, and hence merging their output with a systems biology approach can help to better understand the complex network modulation which leads to a particular phenotype. In this work, we review approaches and applications of target prediction, as well as their shortcomings, and demonstrate two extensions of this concept which are exemplified using phenotypic readouts from a chemical genetic screen in Xenopus laevis. In particular, the experimental observations are linked to their predicted bioactivity profiles. Predicted targets are annotated with pathways, which lead to further biological insight. Moreover, we subject the prediction to further machine learning algorithms, namely decision trees, to capture the differential pharmacology of ligand-target interactions in biological systems. Both methodologies hence provide new insight into understanding the Mechanism of Action of compound activities from phenotypic screens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA