RESUMEN
Neutron stars and stellar-mass black holes are the remnants of massive star explosions1. Most massive stars reside in close binary systems2, and the interplay between the companion star and the newly formed compact object has been theoretically explored3, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.4-day periodic undulations during the declining light curve. Narrow Hα emission is detected in late-time spectra with concordant periodic velocity shifts, probably arising from hydrogen gas stripped from a companion and accreted onto the compact remnant. A new Fermi-LAT γ-ray source is temporally and positionally consistent with SN 2022jli. The observed properties of SN 2022jli, including periodic undulations in the optical light curve, coherent Hα emission shifting and evidence for association with a γ-ray source, point to the explosion of a massive star in a binary system leaving behind a bound compact remnant. Mass accretion from the companion star onto the compact object powers the light curve of the supernova and generates the γ-ray emission.
RESUMEN
White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterized by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink towards the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium1,2. Several mechanisms compete with gravitational settling to change a white dwarf's surface composition as it cools3, and the fraction of white dwarfs with helium atmospheres is known to increase by a factor of about 2.5 below a temperature of about 30,000 kelvin4-8; therefore, some white dwarfs that appear to have hydrogen-dominated atmospheres above 30,000 kelvin are bound to transition to be helium-dominated as they cool below it. Here we report observations of ZTF J203349.8+322901.1, a transitioning white dwarf with two faces: one side of its atmosphere is dominated by hydrogen and the other one by helium. This peculiar nature is probably caused by the presence of a small magnetic field, which creates an inhomogeneity in temperature, pressure or mixing strength over the surface9-11. ZTF J203349.8+322901.1 might be the most extreme member of a class of magnetic, transitioning white dwarfs-together with GD 323 (ref. 12), a white dwarf that shows similar but much more subtle variations. This class of white dwarfs could help shed light on the physical mechanisms behind the spectral evolution of white dwarfs.
RESUMEN
In recent years, certain luminous extragalactic optical transients have been observed to last only a few days1. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae), whose timescale is weeks2. Some short-duration transients, most notably AT2018cow (ref. 3), show blue optical colours and bright radio and X-ray emission4. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source5, such as X-ray variability6,7, prolonged ultraviolet emission8, a tentative X-ray quasiperiodic oscillation9,10 and large energies coupled to fast (but subrelativistic) radio-emitting ejecta11,12. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the 'Tasmanian Devil'). The flares occur over a period of months, are highly energetic and are probably nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that, in some AT2018cow-like transients, the embedded energy source is a compact object, either a magnetar or an accreting black hole.
RESUMEN
Of more than a thousand known cataclysmic variables (CVs), where a white dwarf is accreting from a hydrogen-rich star, only a dozen have orbital periods below 75 minutes1-9. One way to achieve these short periods requires the donor star to have undergone substantial nuclear evolution before interacting with the white dwarf10-14, and it is expected that these objects will transition to helium accretion. These transitional CVs have been proposed as progenitors of helium CVs13-18. However, no known transitional CV is expected to reach an orbital period short enough to account for most of the helium CV population, leaving the role of this evolutionary pathway unclear. Here we report observations of ZTF J1813+4251, a 51-minute-orbital-period, fully eclipsing binary system consisting of a star with a temperature comparable to that of the Sun but a density 100 times greater owing to its helium-rich composition, accreting onto a white dwarf. Phase-resolved spectra, multi-band light curves and the broadband spectral energy distribution allow us to obtain precise and robust constraints on the masses, radii and temperatures of both components. Evolutionary modelling shows that ZTF J1813+4251 is destined to become a helium CV binary, reaching an orbital period under 20 minutes, rendering ZTF J1813+4251 a previously missing link between helium CV binaries and hydrogen-rich CVs.
RESUMEN
Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original 'black widow', the eight-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20)1, high-energy emission originating from the pulsar2 is irradiating and may eventually destroy3 a low-mass companion. These systems are not only physical laboratories that reveal the interesting results of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars4, allowing for robust tests of the neutron star equation of state. Here we report observations of ZTF J1406+1222, a wide hierarchical triple hosting a 62-minute orbital period black widow candidate, the optical flux of which varies by a factor of more than ten. ZTF J1406+1222 pushes the boundaries of evolutionary models5, falling below the 80-minute minimum orbital period of hydrogen-rich systems. The wide tertiary companion is a rare low-metallicity cool subdwarf star, and the system has a Galactic halo orbit consistent with passing near the Galactic Centre, making it a probe of formation channels, neutron star kick physics6 and binary evolution.
RESUMEN
White dwarfs represent the last stage of evolution of stars with mass less than about eight times that of the Sun and, like other stars, are often found in binaries1,2. If the orbital period of the binary is short enough, energy losses from gravitational-wave radiation can shrink the orbit until the two white dwarfs come into contact and merge3. Depending on the component masses, the merger can lead to a supernova of type Ia or result in a massive white dwarf4. In the latter case, the white dwarf remnant is expected to be highly magnetized5,6 because of the strong magnetic dynamo that should arise during the merger, and be rapidly spinning from the conservation of the orbital angular momentum7. Here we report observations of a white dwarf, ZTF J190132.9+145808.7, that exhibits these properties, but to an extreme: a rotation period of 6.94 minutes, a magnetic field ranging between 600 megagauss and 900 megagauss over its surface, and a stellar radius of [Formula: see text] kilometres, only slightly larger than the radius of the Moon. Such a small radius implies that the star's mass is close to the maximum white dwarf mass, or Chandrasekhar mass. ZTF J190132.9+145808.7 is likely to be cooling through the Urca processes (neutrino emission from electron capture on sodium) because of the high densities reached in its core.
RESUMEN
Identification of antibodies targeting diverse functional epitopes on an antigen is highly crucial for discovering effective therapeutic candidates. Employing a traditional stepwise antibody "screening funnel" as well as prioritizing affinity-based selections over epitope-based selections, result in lead antibody panels lacking epitope diversity. In the present study, we employed an array-based surface plasmon resonance (SPR) platform to perform high-throughput epitope binning analysis on a large number of monoclonal antibodies (mAbs) generated in the early drug discovery process. The mAb panel contained clones from different antibody generation techniques and diverse transgenic mouse strains. The epitope binning results were analyzed in unique ways using various visualizations in the form of dendrograms and network plots, which assisted in determining diversity and redundancy in the mAb sample set. The binning data were further integrated with affinity information to evaluate the performance of seven different transgenic mouse strains. The combination of epitope binning results with binding kinetics and sequence analysis provided an effective and efficient way of selecting high affinity antibodies representing a diverse set of sequence families and epitopes.
Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Animales , Epítopos , Ratones , Resonancia por Plasmón de SuperficieRESUMEN
Immune checkpoint inhibitors (ICIs) have emerged as promising therapies for the treatment of cancer. However, existing ICIs, namely PD-(L)1 and CTLA-4 inhibitors, generate durable responses only in a subset of patients. TIGIT is a co-inhibitory receptor and member of the DNAM-1 family of immune modulating proteins. We evaluated the prevalence of TIGIT and its cognate ligand, PVR (CD155), in human cancers by assessing their expression in a large set of solid tumors. TIGIT is expressed on CD4+ and CD8+ TILs and is upregulated in tumors compared to normal tissues. PVR is expressed on tumor cells and tumor-associated macrophages from multiple solid tumors. We explored the therapeutic potential of targeting TIGIT by generating COM902, a fully human anti-TIGIT hinge-stabilized IgG4 monoclonal antibody that binds specifically to human, cynomolgus monkey, and mouse TIGIT, and disrupts the binding of TIGIT with PVR. COM902, either alone or in combination with a PVRIG (COM701) or PD-1 inhibitor, enhances antigen-specific human T cell responses in-vitro. In-vivo, a mouse chimeric version of COM902 in combination with an anti-PVRIG or anti-PD-L1 antibody inhibited tumor growth and increased survival in two syngeneic mouse tumor models. In summary, COM902 enhances anti-tumor immune responses and is a promising candidate for the treatment of advanced malignancies.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígeno B7-H1/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores de Superficie Celular/inmunología , Receptores Inmunológicos/inmunología , Transducción de Señal/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunoterapia/métodos , Células Jurkat , Macaca fascicularis , Ratones , Ratones Endogámicos BALB CRESUMEN
Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.
RESUMEN
The transport properties of the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) confined within silica microparticles with well-ordered, accessible mesopores (5.4 or 9 nm diameter) were investigated. [BMIM][PF6] confinement was confirmed by using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The transport properties of the confined IL were studied using the neutral and cationic fluorescent probes 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and rhodamine 6G, respectively, through fluorescence recovery after photobleaching (FRAP) in confocal microscopy. The diffusivity of DCM in 9 nm pores is 0.026 ± 0.0091 µm2/s, which is 2 orders of magnitude less than in the bulk ionic liquid. The pore size did not affect the diffusivity of DCM in unmodified silica nanopores. The diffusivity of the cationic probe is reduced by 63% relative to that of the neutral probe. Diffusivity is increased with water content, where equilibrium hydration of the system leads to a 37% increase in DCM diffusivity. The most dramatic impact on diffusivity was caused by tethering an IL-like methylimidazolium chloride group to the pores, which increased the pore hydrophobicity and resulted in 3-fold higher diffusivity of DCM compared to bare silica pores. Subsequent exchange of the chloride anion from the tethering group with PF6- decreased the diffusivity to half that of bare silica. The diffusion of probe molecules is affected most strongly by the pore wall effects on probe interactions rather than by the pore size itself, which suggests that understanding pore wall diffusion is critical to the design of nanoconfined ILs for separations, catalysis, and energy storage.
RESUMEN
Interleukin-6 (IL-6) is a major pro-inflammatory cytokine for which the levels in plasma demonstrate a robust correlation with age and body mass index (BMI) as part of the senescence-associated secretory phenotype. IL-6 cytokines also play a crucial role in metabolic homeostasis and regenerative processes, primarily via the canonical STAT3 pathway. Thus, selective modulation of IL-6 signaling may offer a unique opportunity for therapeutic interventions. Recently, we discovered that a non-canonical signaling pathway downstream of tyrosine (Y) 814 within the intracellular domain of gp130, the IL-6 co-receptor, is responsible for the recruitment and activation of SRC family of kinases (SFK). Mice with constitutive genetic inactivation of gp130 Y814 (F814 mice) show accelerated resolution of inflammatory response and superior regenerative outcomes in skin wound healing and posttraumatic models of osteoarthritis. The current study was designed to explore if selective genetic or pharmacological inhibition of the non-canonical gp130-Y814/SFK signaling reduces systemic chronic inflammation and multimorbidity in a high-fat diet (HFD)-induced model of accelerated aging. F814 mice showed significantly reduced inflammatory response to HFD in adipose and liver tissue, with significantly reduced levels of systemic inflammation compared to wild type mice. F814 mice were also protected from HFD-induced bone loss and cartilage degeneration. Pharmacological inhibition of gp130-Y814/SFK in mice on HFD mirrored the effects observed in F814 mice on HFD; furthermore, this pharmacological treatment also demonstrated a marked increase in physical activity levels and protective effects against inflammation-associated suppression of neurogenesis in the brain tissue compared to the control group. These findings suggest that selective inhibition of SFK signaling downstream of gp130 receptor represents a promising strategy to alleviate systemic chronic inflammation. Increased degenerative changes and tissue senescence are inevitable in obese and aged organisms, but we demonstrated that the systemic response and inflammation-associated multi-morbidity can be therapeutically mitigated.
RESUMEN
Organ cryopreservation would revolutionize transplantation by overcoming the shelf-life limitations of conventional organ storage. To prepare an organ for cryopreservation, it is first perfused with cryoprotectants (CPAs). These chemicals can enable vitrification during cooling, preventing ice damage. However, CPAs can also cause toxicity and osmotic damage. It is a major challenge to find the optimal balance between protecting the cells from ice and avoiding CPA-induced damage. In this study, we examined the organ perfusion process to shed light on phenomena relevant to cryopreservation protocol design, including changes in organ size and vascular resistance. In particular, we compared perfusion of kidneys (porcine and human) with CPA in either hypotonic or isotonic vehicle solution. Our results demonstrate that CPA perfusion causes kidney mass changes consistent with the shrink-swell response observed in cells. This response was observed when the kidneys were relatively fresh, but disappeared after prolonged warm and/or cold ischemia. Perfusion with CPA in a hypotonic vehicle solution led to a significant increase in vascular resistance, suggesting reduced capillary diameter due to cell swelling. This could be reversed by switching to perfusion with CPA in isotonic vehicle solution. Hypotonic vehicle solution did not cause notable osmotic damage, as evidenced by low levels of lactate dehydrogenase (LDH) in the effluent, and it did not have a statistically significant effect on the delivery of CPA into the kidney, as assessed by computed tomography (CT). Overall, our results show that CPA vehicle solution tonicity affects organ size and vascular resistance, which may have important implications for cryopreservation protocol design.
Asunto(s)
Criopreservación , Hielo , Humanos , Animales , Porcinos , Criopreservación/métodos , Crioprotectores/farmacología , Riñón/diagnóstico por imagen , Soluciones Hipotónicas , PerfusiónRESUMEN
The clinical successes of immune checkpoint blockade have invigorated efforts to activate T cell-mediated responses against cancer. Targeting members of the PVR family, consisting of inhibitory receptors TIGIT, CD96, and CD112R, has been an active area of clinical investigation. In this study, the binding interactions and molecular assemblies of the PVR family receptors and ligands have been assessed in vitro. Furthermore, the anti-TIGIT monoclonal antibody BMS-986207 crystal structure in complex with TIGIT was determined and shows that the antibody binds an epitope that is commonly targeted by the CD155 ligand as well as other clinical anti-TIGIT antibodies. In contrast to previously proposed models, where TIGIT outcompetes costimulatory receptor CD226 for binding to CD155 due to much higher affinity (nanomolar range), our data rather suggest that PVR family members all engage in interactions with relatively weak affinity (micromolar range), including TIGIT and CD155 interactions. Thus, TIGIT and other PVR inhibitory receptors likely elicit immune suppression via increased surface expression rather than inherent differences in affinity. This work provides an improved foundational understanding of the PVR family network and mechanistic insight into therapeutic antibody intervention.
Asunto(s)
Neoplasias , Receptores Inmunológicos , Humanos , Linfocitos T/metabolismo , Anticuerpos Monoclonales/uso terapéutico , LigandosRESUMEN
BACKGROUND: The use of anticoagulation therapy (ACT) in trauma patients during the post-injury period presents a challenge given the increased risk of hemorrhage. Guidelines regarding whether and when to initiate ACT are lacking, and as a result, practice patterns vary widely. The purpose of this study is to describe the incidence of hemorrhagic complications in patients who received ACT during their hospitalization, identify risk factors, and characterize the required interventions. METHODS: In this retrospective cohort study, all trauma admissions at two Level 1 trauma centers between January 2015 and December 2020 were reviewed. Patients with pre-existing ACT use or those who developed a new indication for ACT were included for analysis. Demographic and outcome data were collected for those who received ACT during their admission. Comparisons were then made between the complications and no complications groups. A subgroup analysis was performed for all patients started on ACT within 14 days of injury. RESULTS: A total of 812 patients were identified as having an indication for ACT, and 442 patients received ACT during the post-injury period. The overall incidence of hemorrhagic complications was 12.7%. Of those who sustained hemorrhagic complications, 18 required procedural intervention. On regression analysis, male sex, severe injuries, and the need for hemorrhage control surgery on arrival were all found to be associated with hemorrhagic complications after the initiation of ACT. Waiting 7-14 days from the time of injury to initiate ACT reduced the odds of complications by 46% and 71%, respectively. CONCLUSIONS: The use of ACT in trauma during the post-injury period is not without risk. Waiting 7-14 days post-injury might greatly reduce the risk of hemorrhagic complications. STUDY TYPE/LEVEL OF EVIDENCE: Therapeutic/care management study: Level IV.
RESUMEN
Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167Ⳡand almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures.
RESUMEN
To characterize a proprietary therapeutic monoclonal antibody (mAb) candidate, a rigorous biophysical study consisting of 53 Biacore and kinetic exclusion assay (KinExA) experiments was undertaken on the therapeutic mAb complexing with its target antigen. Unexpectedly, the observed binding kinetics depended on the chip used, suggesting that the negatively charged carboxyl groups on CM5, CM4, and C1 chips were adversely affecting the Biacore kinetic results. To study this hypothesis, Biacore solution-phase and KinExA equilibrium titrations, as well as KinExA kinetic measurements, were performed to establish accurate values for the affinity and kinetic rate constants of the binding reaction between antigen and mAb. The results revealed that as the negative charge on the biosensor surface decreased, the binding kinetics and K(D) approached the accurate binding parameters more closely when measured in solution. Two potential causes for the artifactual Biacore surface-based measurements are (i) steric hindrance of antigen binding arising from an interaction of the negatively charged carboxymethyldextran matrix with the mAb, which is a highly basic protein with a pI of 9.4, and (ii) an electrostatic repulsion between the negatively charged antigen and the carboxymethyldextran matrix. Importantly, simple diagnostic tests can be performed early in the measurement process to identify these types of matrix-mediated artifacts.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos/inmunología , Resonancia por Plasmón de Superficie/métodos , Artefactos , Dextranos/química , Humanos , Cinética , Propiedades de SuperficieRESUMEN
In this study, we observed the variations on physiological and perceptual variables during a self-paced 10,000-m race walking (RW) event with the aim to trace a preliminary performance profile of the distance. In 14 male athletes, the heart rate (HR) was monitored continuously throughout the event. The rating of perceived exertion (RPE) was collected using the Borg's 6-20 RPE scale placed at each 1,000 m of an outdoor tartan track. Pacing data were retrieved from the official race results and presented as percent change compared with the first split time. The athletes spent 95.4% at 90-100% of the HRpeak, whereas the other work (4.6%) was negligible. During the race, a shift toward higher HR values was observed because % HRpeak increased by 3.6% in the last vs. the first 1,000-m sector (p = 0.002, effect size [ES] = 1.55 ± 0.68, large). The mean RPE reported by the athletes in the last 1,000 m was significantly higher than in the first 5 sectors (p < 0.02, ES = 1.93-2.96, large to very large). The mean percent change increased between the first 6 sectors and the last 1,000-m sector (p < 0.01, ES = 1.02-2.1, moderate to very large). The analysis of walking velocity at each 1,000-m sector suggested the adoption of a negative pacing. In conclusion, the RPE may be a valid marker of exercise intensity even in real settings. Match physiological and perceptual data with work rate are required to understand race-related regulatory processes. Pacing should be considered as a conscious behavior decided by the athletes based on the internal feedback during the race.
Asunto(s)
Rendimiento Atlético/fisiología , Rendimiento Atlético/psicología , Caminata/fisiología , Caminata/psicología , Adolescente , Adulto , Atletas , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Resistencia Física/fisiología , Esfuerzo Físico/fisiología , Adulto JovenRESUMEN
The aim of this case study was to describe the physiological and regulatory processes, by means of heart rate (HR) monitoring and pacing strategy, in a top-level race walker (age: 32 years; height: 1.76 m; body mass: 62 kg; training volume: 130-150 km·wk) who was focused on the attainment of the 5-km indoor race walk (RW) World Record. The HRmean was 185 ± 14.9 b·min, with an HRmean/HRmax ratio of 0.96. Almost the whole race (91.8%) was performed to an intensity ≥90% of the HRmax; lower intensity work was negligible (8.1%). The race profile was a reverse J-shaped pacing curve; in fact, the athlete completed the first 1,000 m in the fastest time, slowing during the middle 3,000 m, and increasing the speed during the final 1,000 m of the race. Despite the attempt failed (the athlete performed only the 2009 World leading performance, 18 minutes 23 seconds 47 tenths), these data suggest that a more linear strain distribution for the entire performance would be optimal instead of a fast-start strategy, which leads to a drastic decrement of the walking velocity. Moreover, this study supports the use of HR monitoring combined with the regulation of the effort to understand the physiological and regulatory processes during an indoor RW event.
Asunto(s)
Rendimiento Atlético/fisiología , Monitoreo Ambulatorio , Resistencia Física/fisiología , Caminata/fisiología , Adulto , Frecuencia Cardíaca , Humanos , Masculino , Factores de TiempoRESUMEN
The aim of this study was to analyse the important kinematic variables in elite men's and women's 20 km race walking. Thirty men and 30 women were analysed from video data recorded during the World Race Walking Cup. Video data were also recorded at four points during the European Cup Race Walking and 12 men and 12 women analysed from these data. Two camcorders operating at 50 Hz recorded at each race for 3D analysis. The two main performance determinants of speed were step length and cadence. Men were faster than women because of their greater step lengths but there was no difference in cadence. A reduction in step length was the initial cause of slowing down with later decreases in speed caused by reductions in cadence. Shorter contact times were important in optimising both step length and cadence, and faster athletes tended to have longer flight times than slower athletes. It was less clear which other kinematic variables were critical for successful walking, particularly with regard to joint angles. Different associations were found for some key variables in men and women, suggesting that their techniques may differ due to differences in height and mass.