Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Respir J ; 59(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34172469

RESUMEN

QUESTION: Cystic fibrosis (CF) is characterised by the accumulation of viscous adherent mucus in the lungs. While several hypotheses invoke a direct relationship with cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction (i.e. acidic airway surface liquid (ASL) pH, low bicarbonate (HCO3 -) concentration, airway dehydration), the dominant biochemical alteration of CF mucus remains unknown. MATERIALS/METHODS: We characterised a novel cell line (CFTR-KO Calu3 cells) and the responses of human bronchial epithelial (HBE) cells from subjects with G551D or F508del mutations to ivacaftor and elexacaftor-tezacaftor-ivacaftor. A spectrum of assays such as short-circuit currents, quantitative PCR, ASL pH, Western blotting, light scattering/refractometry (size-exclusion chromatography with inline multi-angle light scattering), scanning electron microscopy, percentage solids and particle tracking were performed to determine the impact of CFTR function on mucus properties. RESULTS: Loss of CFTR function in Calu3 cells resulted in ASL pH acidification and mucus hyperconcentration (dehydration). Modulation of CFTR in CF HBE cells did not affect ASL pH or mucin mRNA expression, but decreased mucus concentration, relaxed mucus network ultrastructure and improved mucus transport. In contrast with modulator-treated cells, a large fraction of airway mucins remained attached to naïve CF cells following short apical washes, as revealed by the use of reducing agents to remove residual mucus from the cell surfaces. Extended hydration, but not buffers alkalised with sodium hydroxide or HCO3 -, normalised mucus recovery to modulator-treated cell levels. CONCLUSION: These results indicate that airway dehydration, not acidic pH and/or low [HCO3 -], is responsible for abnormal mucus properties in CF airways and CFTR modulation predominantly restores normal mucin entanglement.


Asunto(s)
Fibrosis Quística , Bicarbonatos/metabolismo , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Transporte Iónico , Moco/metabolismo
2.
Radiology ; 300(2): 380-387, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34100680

RESUMEN

Background MR fingerprinting (MRF) provides rapid and simultaneous quantification of multiple tissue parameters in a single scan. Purpose To evaluate a rapid kidney MRF technique at 3.0 T in phantoms, healthy volunteers, and patients. Materials and Methods A 15-second kidney MRF acquisition was designed with 12 acquisition segments, a range of low flip angles (5°-12°), multiple magnetization preparation schema (T1, T2, and fat suppression), and an undersampled spiral trajectory. This technique was first validated in vitro using standardized T1 and T2 phantoms. Kidney T1 and T2 maps were then obtained for 10 healthy adult volunteers (mean age ± standard deviation, 35 years ± 13; six men) and three pediatric patients with autosomal recessive polycystic kidney disease (ARPKD) (mean age, 10 years ± 3; two boys) between August 2019 and October 2020 to evaluate the method in vivo. Results Results in nine phantoms showed good agreement with spin-echo-based T1 and T2 values (R2 > 0.99). In vivo MRF kidney T1 and T2 assessments in healthy adult volunteers (cortex: T1, 1362 msec ± 5; T2, 64 msec ± 5; medulla: T1, 1827 msec ± 94; T2, 69 msec ± 3) were consistent with values in the literature but with improved precision in comparison with prior MRF implementations. In vivo MRF-based kidney T1 and T2 values with and without B1 correction were in good agreement (R2 > 0.96, P < .001), demonstrating limited sensitivity to B1 field inhomogeneities. Additional MRF reconstructions using the first nine segments of the MRF profiles (11-second acquisition time) were in good agreement with the reconstructions using 12 segments (15-second acquisition time) (R2 > 0.87, P < .001). Repeat kidney MRF scans for the three patients with ARPKD on successive days also demonstrated good reproducibility (T1 and T2: <3% difference). Conclusion A kidney MR fingerprinting method provided in vivo kidney T1 and T2 maps at 3.0 T in a single breath hold with improved precision and no need for B1 correction. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Laustsen in this issue.


Asunto(s)
Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Riñón Poliquístico Autosómico Recesivo/diagnóstico por imagen , Adulto , Contencion de la Respiración , Niño , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Fantasmas de Imagen
3.
Physiol Genomics ; 52(6): 234-244, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32390556

RESUMEN

Organoids are a valuable three-dimensional (3D) model to study the differentiated functions of the human intestinal epithelium. They are a particularly powerful tool to measure epithelial transport processes in health and disease. Though biological assays such as organoid swelling and intraluminal pH measurements are well established, their underlying functional genomics are not well characterized. Here we combine genome-wide analysis of open chromatin by ATAC-Seq with transcriptome mapping by RNA-Seq to define the genomic signature of human intestinal organoids (HIOs). These data provide an important tool for investigating key physiological and biochemical processes in the intestinal epithelium. We next compared the transcriptome and open chromatin profiles of HIOs with equivalent data sets from the Caco2 colorectal carcinoma line, which is an important two-dimensional (2D) model of the intestinal epithelium. Our results define common features of the intestinal epithelium in HIO and Caco2 and further illustrate the cancer-associated program of the cell line. Generation of Caco2 cysts enabled interrogation of the molecular divergence of the 2D and 3D cultures. Overrepresented motif analysis of open chromatin peaks identified caudal type homeobox 2 (CDX2) as a key activating transcription factor in HIO, but not in monolayer cultures of Caco2. However, the CDX2 motif becomes overrepresented in open chromatin from Caco2 cysts, reinforcing the importance of this factor in intestinal epithelial differentiation and function. Intersection of the HIO and Caco2 transcriptomes further showed functional overlap in pathways of ion transport and tight junction integrity, among others. These data contribute to understanding human intestinal organoid biology.


Asunto(s)
Cromatina/genética , Colon/fisiología , Mucosa Intestinal/fisiología , Organoides/metabolismo , Factores de Transcripción/genética , Secuencia de Bases , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Células CACO-2 , Diferenciación Celular/fisiología , Línea Celular Tumoral , Cromatina/metabolismo , Colon/anatomía & histología , Colon/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Mucosa Intestinal/metabolismo , Organoides/citología , Factores de Transcripción/metabolismo , Transcriptoma
4.
J Bacteriol ; 201(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31209076

RESUMEN

Previous work from our group indicated an association between the gastrointestinal microbiota of infants with cystic fibrosis (CF) and airway disease in this population. Here we report that stool microbiota of infants with CF demonstrates an altered but largely unchanging within-individual bacterial diversity (alpha diversity) over the first year of life, in contrast to the infants without CF (control cohort), which showed the expected increase in alpha diversity over the first year. The beta diversity, or between-sample diversity, of these two cohorts was significantly different over the first year of life and was statistically significantly associated with airway exacerbations, confirming our earlier findings. Compared with control infants, infants with CF had reduced levels of Bacteroides, a bacterial genus associated with immune modulation, as early as 6 weeks of life, and this significant reduction of Bacteroides spp. in the cohort with CF persisted over the entire first year of life. Only two other genera were significantly different across the first year of life: Roseburia was significantly reduced and Veillonella was significantly increased. Other genera showed differences between the two cohorts but only at selected time points. In vitro studies demonstrated that exposure of the apical face of polarized intestinal cell lines to Bacteroides species supernatants significantly reduced production of interleukin 8 (IL-8), suggesting a mechanism whereby changes in the intestinal microbiota could impact inflammation in CF. This work further establishes an association between gastrointestinal microbiota, inflammation, and airway disease in infants with CF and presents a potential opportunity for therapeutic interventions beginning in early life.IMPORTANCE There is growing evidence for a link between gastrointestinal bacterial communities and airway disease progression in CF. We demonstrate that infants with CF ≤1 year of age show a distinct stool microbiota versus that of control infants of a comparable age. We detected associations between the gut microbiome and airway exacerbation events in the cohort of infants with CF, and in vitro studies provided one possible mechanism for this observation. These data clarify that current therapeutics do not establish in infants with CF a gastrointestinal microbiota like that in healthy infants, and we suggest that interventions that direct the gastrointestinal microbiota closer to a healthy state may provide systemic benefits to these patients during a critical window of immune programming that might have implications for lifelong health.


Asunto(s)
Bacterias/aislamiento & purificación , Fibrosis Quística/microbiología , Heces/microbiología , Microbioma Gastrointestinal , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Bacteroides/aislamiento & purificación , Estudios de Cohortes , Fibrosis Quística/inmunología , Femenino , Humanos , Lactante , Masculino , Sistema Respiratorio/inmunología
5.
Am J Respir Crit Care Med ; 197(1): 79-93, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28853905

RESUMEN

RATIONALE: The severity of cystic fibrosis (CF) lung disease varies widely, even for Phe508del homozygotes. Heritability studies show that more than 50% of the variability reflects non-cystic fibrosis transmembrane conductance regulator (CFTR) genetic variation; however, the full extent of the pertinent genetic variation is not known. OBJECTIVES: We sought to identify novel CF disease-modifying mechanisms using an integrated approach based on analyzing "in vivo" CF airway epithelial gene expression complemented with genome-wide association study (GWAS) data. METHODS: Nasal mucosal RNA from 134 patients with CF was used for RNA sequencing. We tested for associations of transcriptomic (gene expression) data with a quantitative phenotype of CF lung disease severity. Pathway analysis of CF GWAS data (n = 5,659 patients) was performed to identify novel pathways and assess the concordance of genomic and transcriptomic data. Association of gene expression with previously identified CF GWAS risk alleles was also tested. MEASUREMENTS AND MAIN RESULTS: Significant evidence of heritable gene expression was identified. Gene expression pathways relevant to airway mucosal host defense were significantly associated with CF lung disease severity, including viral infection, inflammation/inflammatory signaling, lipid metabolism, apoptosis, ion transport, Phe508del CFTR processing, and innate immune responses, including HLA (human leukocyte antigen) genes. Ion transport and CFTR processing pathways, as well as HLA genes, were identified across differential gene expression and GWAS signals. CONCLUSIONS: Transcriptomic analyses of CF airway epithelia, coupled to genomic (GWAS) analyses, highlight the role of heritable host defense variation in determining the pathophysiology of CF lung disease. The identification of these pathways provides opportunities to pursue targeted interventions to improve CF lung health.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Variación Genética , Enfermedades Pulmonares/genética , ARN/genética , Adolescente , Adulto , Estudios de Cohortes , Fibrosis Quística/complicaciones , Fibrosis Quística/patología , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/patología , Masculino , Mucosa Nasal/patología , Pronóstico , ARN/análisis , Medición de Riesgo , Índice de Severidad de la Enfermedad , Adulto Joven
6.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G685-G698, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118352

RESUMEN

Negative energy balance is a prevalent feature of cystic fibrosis (CF). Pancreatic insufficiency, elevated energy expenditure, lung disease, and malnutrition, all characteristic of CF, contribute to the negative energy balance causing low body-growth phenotype. As low body weight and body mass index strongly correlate with poor lung health and survival of patients with CF, improving energy balance is an important clinical goal (e.g., high-fat diet). CF mouse models also exhibit negative energy balance (growth retardation and high energy expenditure), independent from exocrine pancreatic insufficiency, lung disease, and malnutrition. To improve energy balance through increased caloric intake and reduced energy expenditure, we disrupted leptin signaling by crossing the db/db leptin receptor allele with mice carrying the R117H Cftr mutation. Compared with db/db mice, absence of leptin signaling in CF mice (CF db/db) resulted in delayed and moderate hyperphagia with lower de novo lipogenesis and lipid deposition, producing only moderately obese CF mice. Greater body length was found in db/db mice but not in CF db/db, suggesting CF-dependent effect on bone growth. The db/db genotype resulted in lower energy expenditure regardless of Cftr genotype leading to obesity. Despite the db/db genotype, the CF genotype exhibited high respiratory quotient indicating elevated carbohydrate oxidation, thus limiting carbohydrates for lipogenesis. In summary, db/db-linked hyperphagia, elevated lipogenesis, and morbid obesity were partially suppressed by reduced CFTR activity. CF mice still accrued large amounts of adipose tissue in contrast to mice fed a high-fat diet, thus highlighting the importance of dietary carbohydrates and not simply fat for energy balance in CF. NEW & NOTEWORTHY We show that cystic fibrosis (CF) mice are able to accrue fat under conditions of carbohydrate overfeeding, increased lipogenesis, and decreased energy expenditure, although length was unaffected. High-fat diet feeding failed to improve growth in CF mice. Morbid db/db-like obesity was reduced in CF double-mutant mice by reduced CFTR activity.


Asunto(s)
Tejido Adiposo/patología , Fibrosis Quística/complicaciones , Leptina/metabolismo , Lipogénesis , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Animales , Dieta de Carga de Carbohidratos/efectos adversos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Transducción de Señal
7.
Am J Physiol Gastrointest Liver Physiol ; 315(6): G943-G953, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30188751

RESUMEN

Cystic fibrosis (CF) is a lethal genetic disorder that affects many organ systems of the body, including various endocrine and exocrine tissues. Health and survival positively associate with body mass, and as a consequence, CF clinical care includes high-fat, high-calorie diets to maintain and increase adipose tissue stores. Such strategies have been implemented without a clear understanding of the cause and effect relationship between body mass and patients' health. Here, we used CF mouse models, which display small adipose stores, to begin examining body fat as a prelude into mechanistic studies of low body growth in CF, so that optimal therapeutic strategies could be developed. We reasoned that low adiposity must result from reduced number and/or volume of adipocytes. To determine relative contribution of either mechanism, we quantified volume of intraperitoneal and subcutaneous adipocytes. We found smaller, but not fewer, adipocytes in CF compared with wild-type (WT) animals. Specifically, intraperitoneal CF adipocytes were one-half the volume of WT cells, whereas subcutaneous cells were less affected by the Cftr genotype. No differences were found in cell types between CF and WT adipose tissues. Adipose tissue CFTR mRNA was detected, and we found greater CFTR expression in intraperitoneal depots as compared with subcutaneous samples. RNA sequencing revealed that CF adipose tissue exhibited lower expression of several key genes of adipocyte function ( Lep, Pck1, Fas, Jun), consistent with low triglyceride storage. The data indicate that CF adipocytes contain fewer triglycerides than WT cells, and a role for CFTR in these cells is proposed. NEW & NOTEWORTHY Adipocytes in cystic fibrosis mice exhibit smaller size due to low triglyceride storage. Adipocyte cell number per fat pad is similar, implying triglyceride storage problem. The absence of CFTR function in adipose tissue has been proposed as a direct link to low triglyceride storage in cystic fibrosis.


Asunto(s)
Adipocitos/patología , Fibrosis Quística/patología , Adipocitos/metabolismo , Animales , Tamaño de la Célula , Células Cultivadas , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G868-G878, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118317

RESUMEN

Gastrointestinal dysfunction in cystic fibrosis (CF) is a prominent source of pain among patients with CF. Linaclotide, a guanylate cyclase C (GCC) receptor agonist, is a US Food and Drug Administration-approved drug prescribed for chronic constipation but has not been widely used in CF, as the cystic fibrosis transmembrane conductance regulator (CFTR) is the main mechanism of action. However, anecdotal clinical evidence suggests that linaclotide may be effective for treating some gastrointestinal symptoms in CF. The goal of this study was to determine the effectiveness and mechanism of linaclotide in treating CF gastrointestinal disorders using CF mouse models. Intestinal transit, chloride secretion, and intestinal lumen fluidity were assessed in wild-type and CF mouse models in response to linaclotide. CFTR and sodium/hydrogen exchanger 3 (NHE3) response to linaclotide was also evaluated. Linaclotide treatment improved intestinal transit in mice carrying either F508del or null Cftr mutations but did not induce detectable Cl- secretion. Linaclotide increased fluid retention and fluidity of CF intestinal contents, suggesting inhibition of fluid absorption. Targeted inhibition of sodium absorption by the NHE3 inhibitor tenapanor produced improvements in gastrointestinal transit similar to those produced by linaclotide treatment, suggesting that inhibition of fluid absorption by linaclotide contributes to improved gastrointestinal transit in CF. Our results demonstrate that linaclotide improves gastrointestinal transit in CF mouse models by increasing luminal fluidity through inhibiting NHE3-mediated sodium absorption. Further studies are necessary to assess whether linaclotide could improve CF intestinal pathologies in patients. GCC signaling and NHE3 inhibition may be therapeutic targets for CF intestinal manifestations. NEW & NOTEWORTHY Linaclotide's primary mechanism of action in alleviating chronic constipation is through cystic fibrosis transmembrane conductance regulator (CFTR), negating its use in patients with cystic fibrosis (CF). For the first time, our findings suggest that in the absence of CFTR, linaclotide can improve fluidity of the intestinal lumen through the inhibition of sodium/hydrogen exchanger 3. These findings suggest that linaclotide could improve CF intestinal pathologies in patients.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Tránsito Gastrointestinal , Intestinos/efectos de los fármacos , Péptidos/farmacología , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Animales , Células CACO-2 , Fibrosis Quística/metabolismo , Fibrosis Quística/fisiopatología , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Intestinos/fisiología , Ratones , Ratones Endogámicos C57BL , Péptidos/uso terapéutico
9.
Am J Hum Genet ; 96(2): 318-28, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25640674

RESUMEN

Variation in cystic fibrosis (CF) phenotypes, including lung disease severity, age of onset of persistent Pseudomonas aeruginosa (P. aeruginosa) lung infection, and presence of meconium ileus (MI), has been partially explained by genome-wide association studies (GWASs). It is not expected that GWASs alone are sufficiently powered to uncover all heritable traits associated with CF phenotypic diversity. Therefore, we utilized gene expression association from lymphoblastoid cells lines from 754 p.Phe508del CF-affected homozygous individuals to identify genes and pathways. LPAR6, a G protein coupled receptor, associated with lung disease severity (false discovery rate q value = 0.0006). Additional pathway analyses, utilizing a stringent permutation-based approach, identified unique signals for all three phenotypes. Pathways associated with lung disease severity were annotated in three broad categories: (1) endomembrane function, containing p.Phe508del processing genes, providing evidence of the importance of p.Phe508del processing to explain lung phenotype variation; (2) HLA class I genes, extending previous GWAS findings in the HLA region; and (3) endoplasmic reticulum stress response genes. Expression pathways associated with lung disease were concordant for some endosome and HLA pathways, with pathways identified using GWAS associations from 1,978 CF-affected individuals. Pathways associated with age of onset of persistent P. aeruginosa infection were enriched for HLA class II genes, and those associated with MI were related to oxidative phosphorylation. Formal testing demonstrated that genes showing differential expression associated with lung disease severity were enriched for heritable genetic variation and expression quantitative traits. Gene expression provided a powerful tool to identify unrecognized heritable variation, complementing ongoing GWASs in this rare disease.


Asunto(s)
Fibrosis Quística/genética , Fibrosis Quística/patología , Genes MHC Clase I/genética , Variación Genética , Fenotipo , Receptores del Ácido Lisofosfatídico/genética , Estrés del Retículo Endoplásmico/genética , Perfilación de la Expresión Génica , Humanos , Modelos Lineales , Eliminación de Secuencia/genética
10.
J Pediatr ; 166(5): 1152-1157.e6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25771386

RESUMEN

OBJECTIVES: To test the hypothesis that multiple constituents of the apical plasma membrane residing alongside the causal cystic fibrosis (CF) transmembrane conductance regulator protein, including known CF modifiers SLC26A9, SLC6A14, and SLC9A3, would be associated with prenatal exocrine pancreatic damage as measured by newborn screened (NBS) immunoreactive trypsinogen (IRT) levels. STUDY DESIGN: NBS IRT measures and genome-wide genotype data were available on 111 subjects from Colorado, 37 subjects from Wisconsin, and 80 subjects from France. Multiple linear regression was used to determine whether any of 8 single nucleotide polymorphisms (SNPs) in SLC26A9, SLC6A14, and SLC9A3 were associated with IRT and whether other constituents of the apical plasma membrane contributed to IRT. RESULTS: In the Colorado sample, 3 SLC26A9 SNPs were associated with NBS IRT (min P=1.16×10(-3); rs7512462), but no SLC6A14 or SLC9A3 SNPs were associated (P>.05). The rs7512462 association replicated in the Wisconsin sample (P=.03) but not in the French sample (P=.76). Furthermore, rs7512462 was the top-ranked apical membrane constituent in the combined Colorado and Wisconsin sample. CONCLUSIONS: NBS IRT is a biomarker of prenatal exocrine pancreatic disease in patients with CF, and a SNP in SLC26A9 accounts for significant IRT variability. This work suggests SLC26A9 as a potential therapeutic target to ameliorate exocrine pancreatic disease.


Asunto(s)
Antiportadores/genética , Fibrosis Quística/genética , Páncreas Exocrino/anomalías , Biomarcadores/sangre , Membrana Celular/metabolismo , Colorado , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Francia , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Recién Nacido , Modelos Lineales , Masculino , Mutación , Tamizaje Neonatal , Polimorfismo de Nucleótido Simple , Control de Calidad , Transportadores de Sulfato , Tripsinógeno/sangre , Wisconsin
11.
NMR Biomed ; 28(3): 384-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25639694

RESUMEN

High-field preclinical MRI scanners are now commonly used to quantitatively assess disease status and the efficacy of novel therapies in a wide variety of rodent models. Unfortunately, conventional MRI methods are highly susceptible to respiratory and cardiac motion artifacts resulting in potentially inaccurate and misleading data. We have developed an initial preclinical 7.0-T MRI implementation of the highly novel MR fingerprinting (MRF) methodology which has been described previously for clinical imaging applications. The MRF technology combines a priori variation in the MRI acquisition parameters with dictionary-based matching of acquired signal evolution profiles to simultaneously generate quantitative maps of T1 and T2 relaxation times and proton density. This preclinical MRF acquisition was constructed from a fast imaging with steady-state free precession (FISP) MRI pulse sequence to acquire 600 MRF images with both evolving T1 and T2 weighting in approximately 30 min. This initial high-field preclinical MRF investigation demonstrated reproducible and differentiated estimates of in vitro phantoms with different relaxation times. In vivo preclinical MRF results in mouse kidneys and brain tumor models demonstrated an inherent resistance to respiratory motion artifacts as well as sensitivity to known pathology. These results suggest that MRF methodology may offer the opportunity for the quantification of numerous MRI parameters for a wide variety of preclinical imaging applications.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Renales/patología , Imagen por Resonancia Magnética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Glioma/patología , Proteínas Fluorescentes Verdes/metabolismo , Ratones Endogámicos C57BL , Fantasmas de Imagen
12.
Nature ; 458(7241): 1039-42, 2009 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19242412

RESUMEN

Lung disease is the major cause of morbidity and mortality in cystic fibrosis, an autosomal recessive disease caused by mutations in CFTR. In cystic fibrosis, chronic infection and dysregulated neutrophilic inflammation lead to progressive airway destruction. The severity of cystic fibrosis lung disease has considerable heritability, independent of CFTR genotype. To identify genetic modifiers, here we performed a genome-wide single nucleotide polymorphism scan in one cohort of cystic fibrosis patients, replicating top candidates in an independent cohort. This approach identified IFRD1 as a modifier of cystic fibrosis lung disease severity. IFRD1 is a histone-deacetylase-dependent transcriptional co-regulator expressed during terminal neutrophil differentiation. Neutrophils, but not macrophages, from Ifrd1-deficient mice showed blunted effector function, associated with decreased NF-kappaB p65 transactivation. In vivo, IFRD1 deficiency caused delayed bacterial clearance from the airway, but also less inflammation and disease-a phenotype primarily dependent on haematopoietic cell expression, or lack of expression, of IFRD1. In humans, IFRD1 polymorphisms were significantly associated with variation in neutrophil effector function. These data indicate that IFRD1 modulates the pathogenesis of cystic fibrosis lung disease through the regulation of neutrophil effector function.


Asunto(s)
Fibrosis Quística/genética , Fibrosis Quística/patología , Proteínas Inmediatas-Precoces/genética , Animales , Células Cultivadas , Estudios de Cohortes , Modelos Animales de Enfermedad , Genotipo , Humanos , Proteínas Inmediatas-Precoces/deficiencia , Inflamación/genética , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Polimorfismo de Nucleótido Simple/genética , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/patogenicidad , Factor de Transcripción ReIA/metabolismo
13.
J Med Genet ; 51(10): 646-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25163686

RESUMEN

Variants in FAM13A have been found in genome-wide association studies (GWAS) to associate with lung function in the general population as well as in several common chronic lung diseases (CLD) such as chronic obstructive pulmonary disease (COPD), asthma, as well as in idiopathic interstitial pneumonias (IIP). The gene was cloned in 2004, yet the encoded protein has not been characterised and its function is unknown. The redundancy of its genetic contribution in CLD suggests a major function of this gene both in lung physiology and CLD. This review provides a brief summary of the current knowledge of FAM13A, and demonstrates the necessity to resolve its biological function besides its well accepted genetic contribution. Further interpretations of FAM13A variants may help in the understanding of CLD mechanisms and reveal opportunity for intervention.


Asunto(s)
Enfermedad Crónica , Proteínas Activadoras de GTPasa , Enfermedades Pulmonares , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/fisiología , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica
14.
PLoS Genet ; 8(3): e1002580, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438829

RESUMEN

Meconium ileus (MI), a life-threatening intestinal obstruction due to meconium with abnormal protein content, occurs in approximately 15 percent of neonates with cystic fibrosis (CF). Analysis of twins with CF demonstrates that MI is a highly heritable trait, indicating that genetic modifiers are largely responsible for this complication. Here, we performed regional family-based association analysis of a locus that had previously been linked to MI and found that SNP haplotypes 5' to and within the MSRA gene were associated with MI (P = 1.99 × 10(-5) to 1.08 × 10(-6); Bonferroni P = 0.057 to 3.1 × 10(-3)). The haplotype with the lowest P value showed association with MI in an independent sample of 1,335 unrelated CF patients (OR = 0.72, 95% CI [0.53-0.98], P = 0.04). Intestinal obstruction at the time of weaning was decreased in CF mice with Msra null alleles compared to those with wild-type Msra resulting in significant improvement in survival (P = 1.2 × 10(-4)). Similar levels of goblet cell hyperplasia were observed in the ilea of the Cftr(-/-) and Cftr(-/-)Msra(-/-) mice. Modulation of MSRA, an antioxidant shown to preserve the activity of enzymes, may influence proteolysis in the developing intestine of the CF fetus, thereby altering the incidence of obstruction in the newborn period. Identification of MSRA as a modifier of MI provides new insight into the biologic mechanism of neonatal intestinal obstruction caused by loss of CFTR function.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Obstrucción Intestinal , Metionina Sulfóxido Reductasas , Animales , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Estudios de Asociación Genética , Células Caliciformes/patología , Haplotipos , Humanos , Obstrucción Intestinal/complicaciones , Obstrucción Intestinal/genética , Obstrucción Intestinal/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Ratones , Ratones Endogámicos CFTR , Polimorfismo de Nucleótido Simple
15.
PLoS Comput Biol ; 9(1): e1002859, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23341761

RESUMEN

Metabolomics is a relatively new "omics" platform, which analyzes a discrete set of metabolites detected in bio-fluids or tissue samples of organisms. It has been used in a diverse array of studies to detect biomarkers and to determine activity rates for pathways based on changes due to disease or drugs. Recent improvements in analytical methodology and large sample throughput allow for creation of large datasets of metabolites that reflect changes in metabolic dynamics due to disease or a perturbation in the metabolic network. However, current methods of comprehensive analyses of large metabolic datasets (metabolomics) are limited, unlike other "omics" approaches where complex techniques for analyzing coexpression/coregulation of multiple variables are applied. This paper discusses the shortcomings of current metabolomics data analysis techniques, and proposes a new multivariate technique (ADEMA) based on mutual information to identify expected metabolite level changes with respect to a specific condition. We show that ADEMA better predicts De Novo Lipogenesis pathway metabolite level changes in samples with Cystic Fibrosis (CF) than prediction based on the significance of individual metabolite level changes. We also applied ADEMA's classification scheme on three different cohorts of CF and wildtype mice. ADEMA was able to predict whether an unknown mouse has a CF or a wildtype genotype with 1.0, 0.84, and 0.9 accuracy for each respective dataset. ADEMA results had up to 31% higher accuracy as compared to other classification algorithms. In conclusion, ADEMA advances the state-of-the-art in metabolomics analysis, by providing accurate and interpretable classification results.


Asunto(s)
Algoritmos , Metabolómica , Animales , Lipogénesis , Ratones , Modelos Teóricos , Análisis Multivariante
16.
Science ; 384(6701): 1196-1202, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38870301

RESUMEN

In vivo genome correction holds promise for generating durable disease cures; yet, effective stem cell editing remains challenging. In this work, we demonstrate that optimized lung-targeting lipid nanoparticles (LNPs) enable high levels of genome editing in stem cells, yielding durable responses. Intravenously administered gene-editing LNPs in activatable tdTomato mice achieved >70% lung stem cell editing, sustaining tdTomato expression in >80% of lung epithelial cells for 660 days. Addressing cystic fibrosis (CF), NG-ABE8e messenger RNA (mRNA)-sgR553X LNPs mediated >95% cystic fibrosis transmembrane conductance regulator (CFTR) DNA correction, restored CFTR function in primary patient-derived bronchial epithelial cells equivalent to Trikafta for F508del, corrected intestinal organoids and corrected R553X nonsense mutations in 50% of lung stem cells in CF mice. These findings introduce LNP-enabled tissue stem cell editing for disease-modifying genome correction.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Edición Génica , Liposomas , Pulmón , Nanopartículas , Células Madre , Animales , Humanos , Ratones , Sistemas CRISPR-Cas , Fibrosis Quística/terapia , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/metabolismo , Terapia Genética/métodos , Pulmón/metabolismo , Organoides , Células Madre/metabolismo
17.
J Immunol ; 186(8): 4946-58, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21411730

RESUMEN

Respiratory insufficiency is the major cause of morbidity and mortality in patients affected by cystic fibrosis (CF). An excessive neutrophilic inflammation, mainly orchestrated by the release of IL-8 from bronchial epithelial cells and amplified by chronic bacterial infection with Pseudomonas aeruginosa, leads to progressive tissue destruction. The anti-inflammatory drugs presently used in CF patients have several limitations, indicating the need for identifying novel molecular targets. To address this issue, we preliminarily studied the association of 721 single nucleotide polymorphisms from 135 genes potentially involved in signal transduction implicated in neutrophil recruitment in a cohort of F508del homozygous CF patients with either severe or mild progression of lung disease. The top ranking association was found for a nonsynonymous polymorphism of the phospholipase C-ß3 (PLCB3) gene. Studies in bronchial epithelial cells exposed to P. aeruginosa revealed that PLCB3 is implicated in extracellular nucleotide-dependent intracellular calcium signaling, leading to activation of the protein kinase Cα and Cß and of the nuclear transcription factor NF-κB p65. The proinflammatory pathway regulated by PLCB3 acts by potentiating the Toll-like Receptors' signaling cascade and represents an interesting molecular target to attenuate the excessive recruitment of neutrophils without completely abolishing the inflammatory response.


Asunto(s)
Fibrosis Quística/genética , Células Epiteliales/metabolismo , Interleucina-8/genética , Fosfolipasa C beta/genética , Adenosina Trifosfato/farmacología , Calcio/metabolismo , Línea Celular Transformada , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Activación Enzimática , Células Epiteliales/microbiología , Expresión Génica/efectos de los fármacos , Frecuencia de los Genes , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Humanos , Interleucina-8/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Microscopía Fluorescente , Fosfolipasa C beta/metabolismo , Polimorfismo de Nucleótido Simple , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteína Quinasa C beta , Pseudomonas aeruginosa/fisiología , Interferencia de ARN , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
18.
Nat Rev Dis Primers ; 9(1): 46, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679331

RESUMEN

Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Enfermedad del Almacenamiento de Glucógeno Tipo I , Enfermedad del Almacenamiento de Glucógeno , Humanos , Calidad de Vida , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Progresión de la Enfermedad
19.
Lab Anim ; 57(6): 611-622, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37382374

RESUMEN

The laboratory mouse is used extensively for human disease modeling and preclinical therapeutic testing for efficacy, biodistribution, and toxicity. The variety of murine models available, and the ability to create new ones, eclipses all other species, but the size of mice and their organs create challenges for many in vivo studies. For pulmonary research, improved methods to access murine airways and lungs, and track substances administered to them, would be desirable. A nonsurgical endoscopic system with a camera, effectively a bronchoscope, coupled with a cryoimaging fluorescence microscopy technique to view the lungs in 3D, is described here that allows visualization of the procedure, including the anatomical location at which substances are instilled and fluorescence detection of those substances. We have applied it to bacterial infection studies to characterize better and optimize a chronic lung infection murine model in which we instill bacteria-laden agarose beads into the airways and lungs to extend the duration of the infection and inflammation. The use of the endoscope as guidance for placing a catheter into the airways is simple and quick, requiring only momentary sedation, and reduces post-procedural mortality compared with our previous instillation method that includes a trans-tracheal surgery. The endoscopic method improves speed and precision of delivery while reducing the stress on animals and the number of animals generated and used for experiments.


Asunto(s)
Broncoscopía , Pulmón , Humanos , Animales , Ratones , Distribución Tisular , Pulmón/microbiología
20.
Am J Physiol Gastrointest Liver Physiol ; 303(4): G507-18, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22679004

RESUMEN

Cystic fibrosis (CF) mouse models exhibit exocrine pancreatic function, yet they do not develop adipose stores to the levels of non-CF mice. CF mice homozygous for the Cftr mutation (F508del) at 3 wk (postweaning) and 6 wk (young adult) of age had markedly less adipose tissue than non-CF mice. Food intake was markedly lower in 3-wk-old CF mice but normalized by 6 wk of age. Both 3- and 6-wk-old mice had dietary lipid absorption and fecal lipid excretion comparable to non-CF mice. Hepatic de novo lipogenesis (DNL), determined by (2)H incorporation, was reduced in CF mice. At 3 wk, F508del mice had significantly decreased DNL of palmitate and stearate, by 83% and 80%, respectively. By 6 wk, DNL rates in non-CF mice remained unchanged compared with 3-wk-old mice, while DNL rates of F508del mice were still reduced, by 33% and 40%, respectively. Adipose tissue fatty acid (FA) profiles were comparable in CF and non-CF mice, indicating that adipose differences are quantitative, not qualitative. A correspondingly lower content of (2)H-labeled FA was found in CF adipose tissue, consistent with reduced deposition of newly made hepatic triglycerides and/or decreased adipose tissue lipogenesis. Hepatic transcriptome analysis revealed lower mRNA expression from several genes involved in FA biosynthesis, suggesting downregulation of this pathway as a mechanism for the reduced lipogenesis. These novel data provide a model for altered lipid metabolism in CF, independent of malabsorption, and may partly explain the inability of pancreatic enzyme replacement therapy to completely restore normal body mass to CF patients.


Asunto(s)
Tejido Adiposo/metabolismo , Adiposidad , Fibrosis Quística/metabolismo , Ácidos Grasos/biosíntesis , Lipogénesis , Hígado/metabolismo , Triglicéridos/biosíntesis , Tejido Adiposo/fisiopatología , Factores de Edad , Envejecimiento/metabolismo , Animales , Índice de Masa Corporal , Peso Corporal , Fibrosis Quística/genética , Fibrosis Quística/fisiopatología , Modelos Animales de Enfermedad , Ingestión de Alimentos , Ingestión de Energía , Heces/química , Femenino , Regulación de la Expresión Génica , Absorción Intestinal , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Lipogénesis/genética , Hígado/fisiopatología , Masculino , Ratones , Ratones Endogámicos CFTR , ARN Mensajero/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA