RESUMEN
Activation of the Toll-like receptor 4 (TLR4) by bacterial endotoxins in macrophages plays a crucial role in the pathogenesis of sepsis. However, the mechanism underlying TLR4 activation in macrophages is still not fully understood. Here, we reveal that upon lipopolysaccharide (LPS) stimulation, lysine acetyltransferase CBP is recruited to the TLR4 signalosome complex leading to increased acetylation of the TIR domains of the TLR4 signalosome. Acetylation of the TLR4 signalosome TIR domains significantly enhances signaling activation via NF-κB rather than IRF3 pathways. Induction of NF-κB signaling is responsible for gene expression changes leading to M1 macrophage polarization. In sepsis patients, significantly elevated TLR4-TIR acetylation is observed in CD16+ monocytes combined with elevated expression of M1 macrophage markers. Pharmacological inhibition of HDAC1, which deacetylates the TIR domains, or CBP play opposite roles in sepsis. Our findings highlight the important role of TLR4-TIR domain acetylation in the regulation of the immune responses in sepsis, and we propose this reversible acetylation of TLR4 signalosomes as a potential therapeutic target for M1 macrophages during the progression of sepsis.
Asunto(s)
Lipopolisacáridos , Macrófagos , Factor 88 de Diferenciación Mieloide , FN-kappa B , Sepsis , Transducción de Señal , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Sepsis/inmunología , Sepsis/metabolismo , Humanos , Acetilación , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Macrófagos/metabolismo , Macrófagos/inmunología , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Masculino , Dominios Proteicos , AnimalesRESUMEN
The activation of stimulator of interferon genes (STING) signaling induces the production of type I interferons (IFNs), which play critical roles in protective innate immunity for the host to defend against viral infections. Therefore, achieving sustained or enhanced STING activation could become an antiviral immune strategy with potential broad-spectrum activities. Here, we discovered that various clinically used microtubule-destabilizing agents (MDAs) for the treatment of cancer showed a synergistic effect with the activation of STING signaling in innate immune response. The combination of a STING agonist cGAMP and a microtubule depolymerizer MMAE boosted the activation of STING innate immune response and showed broad-spectrum antiviral activity against multiple families of viruses. Mechanistically, MMAE not only disrupted the microtubule network, but also switched the cGAMP-mediated STING trafficking pattern and changed the distribution of Golgi apparatus and STING puncta. The combination of cGAMP and MMAE promoted the oligomerization of STING and downstream signaling cascades. Importantly, the cGAMP plus MMAE treatment increased STING-mediated production of IFNs and other antiviral cytokines to inhibit viral propagation in vitro and in vivo. This study revealed a novel role of the microtubule destabilizer in antiviral immune responses and provides a previously unexploited strategy based on STING-induced innate antiviral immunity.
Asunto(s)
Interferón Tipo I , Proteínas de la Membrana , Proteínas de la Membrana/genética , Inmunidad Innata , Transducción de Señal , Citocinas , Interferón Tipo I/farmacologíaRESUMEN
Catheter ablation (CA) is an essential method for the interventional treatment of atrial fibrillation (AF), and it is very important to reduce long-term recurrence after CA. The mechanism of recurrence after CA is still unclear. We established a long-term model of beagle canines after circumferential pulmonary vein ablation (CPVA). The transcriptome and proteome were obtained using high-throughput sequencing and TMT-tagged LC-MS/LC analysis, respectively. Differentially expressed genes and proteins were screened and enriched, and the effect of fibrosis was found and verified in tissues. A downregulated protein, neuropeptide Y (NPY), was selected for validation and the results suggest that NPY may play a role in the long-term reinduction of AF after CPVA. Then, the molecular mechanism of NPY was further investigated. The results showed that the atrial effective refractory period (AERP) was shortened and fibrosis was increased after CPVA. Atrial myocyte apoptosis was alleviated by NPY intervention, and Akt activation was inhibited in cardiac fibroblasts. These results suggest that long-term suppression of NPY after CPVA may lead to induction of AF through promoting cardiomyocyte apoptosis and activating the Akt pathway in cardiac fibroblasts, which may make AF more likely to reinduce.
Asunto(s)
Apoptosis , Fibrilación Atrial , Ablación por Catéter , Miocardio , Neuropéptido Y , Venas Pulmonares , Animales , Perros , Apoptosis/efectos de los fármacos , Fibrilación Atrial/metabolismo , Fibrilación Atrial/cirugía , Fibrilación Atrial/patología , Ablación por Catéter/métodos , Modelos Animales de Enfermedad , Fibrosis , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Multiómica , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Neuropéptido Y/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Venas Pulmonares/metabolismo , Venas Pulmonares/cirugía , TranscriptomaRESUMEN
BACKGROUND: Idiopathic rapid eye movement sleep behavior disorder (iRBD) is considered as a prodromal stage of synucleinopathies. Fecal short-chain fatty acid (SCFA) changes in iRBD and the relationships with synucleinopathies have never been investigated. OBJECTIVES: To investigate fecal SCFA changes among iRBD, multiple system atrophy (MSA), and Parkinson's disease (PD), and evaluate their relationships. METHODS: Fecal SCFAs and gut microbiota were measured in 29 iRBD, 42 MSA, 40 PD, and 35 normal controls (NC) using gas chromatography-mass spectrometry and 16S rRNA gene sequencing. RESULTS: Compared with NC, fecal SCFA levels (propionic, acetic, and butyric acid) were lower in iRBD, MSA, and PD. Combinations of these SCFAs could differentiate NC from iRBD (AUC 0.809), MSA (AUC 0.794), and PD (AUC 0.701). Decreased fecal SCFAs were associated with the common reducing SCFA-producing gut microbiota in iRBD, MSA, and PD. CONCLUSIONS: iRBD shares similar fecal SCFA alterations with MSA and PD, and the combination of these SCFAs might be a potential synucleinopathies-related biomarker. © 2024 International Parkinson and Movement Disorder Society.
Asunto(s)
Ácidos Grasos Volátiles , Heces , Microbioma Gastrointestinal , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Atrofia de Múltiples Sistemas/metabolismo , Trastorno de la Conducta del Sueño REM/metabolismo , Enfermedad de Parkinson/metabolismo , Heces/química , Heces/microbiología , Masculino , Femenino , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Anciano , Persona de Mediana Edad , Microbioma Gastrointestinal/fisiologíaRESUMEN
The landscape of cell-surface signaling is formidably complex. Robust tools capable of manipulating the spatiotemporal distribution of cell-surface proteins (CSPs) for dissecting signaling are in high demand. Some CSPs are regulated via multivalency-driven liquid-liquid phase separation (LLPS). Employing the robustness and versatility of LLPS, we decided to engineer LLPS-based tools for precisely manipulating CSPs. We generated membrane-tethering LLPS systems by fusing multivalent modular phase-separation scaffold pairs with CSP binders. Phase separation of the scaffold pairs, concomitant compartmentalization of CSPs on membranes, and cluster-dependent signaling outputs of CSPs require membrane recruitment of one or both scaffolds. We also engineered orthogonal phase-separation systems to segregate CSPs into mutually exclusive compartments. The engineered phase-separation systems can robustly cluster individual CSPs, co-cluster two or more CSPs, or segregate different CSPs into distinct compartments on cell surfaces. These tools will enable the dissection of complicated cell-signaling landscapes with high precision.
Asunto(s)
Proteínas de la Membrana , Transducción de Señal , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismoRESUMEN
Currently, the clinical application of protein/peptide therapeutics is mainly limited to the modulation of diseases in extracellular spaces. Intracellular targets are hardly accessed, owing largely to the endosomal entrapment of internalized proteins/peptides. Here, we report a strategy to design and construct peptides that enable endosome-to-cytosol delivery based on an extension of the "histidine switch" principle. By substituting the Arg/Lys residues in cationic cell-penetrating peptides (CPPs) with histidine, we obtained peptides with pH-dependent membrane-perturbation activity. These peptides do not randomly penetrate cells like CPPs, but imitate the endosomal escape of CPPs following cellular uptake. Working with one such 16-residue peptide (hsLMWP) with high endosomal escape capacity, we engineered modular fusion proteins and achieved antibody-targeted delivery of diverse protein cargoes-including the pro-apoptotic protein BID (BH3-interacting domain death agonist) and Cre recombinase-into the cytosol of multiple cancer cell types. After extensive in vitro testing, an in vivo analysis with xenograft mice ultimately demonstrated that a trastuzumab-hsLMWP-BID fusion conferred strong anti-tumor efficacy without apparent side effects. Notably, our fusion protein features a modular design, allowing flexible applications for any antibody/cargo combination of choice. Therefore, the potential applications extend throughout life science and biomedicine, including gene editing, cancer treatment, and immunotherapy.
Asunto(s)
Péptidos de Penetración Celular , Histidina , Humanos , Ratones , Animales , Histidina/metabolismo , Espacio Extracelular/metabolismo , Endosomas/metabolismo , Citosol/metabolismo , Péptidos de Penetración Celular/química , Anticuerpos/metabolismoRESUMEN
BACKGROUND: Differences of genotypes between male and female have been studied in Parkinson's disease (PD), but limited research has focused on the comparison between sexes with LRRK2 G2385 variant. OBJECTIVE: The aim of this study was to explore sex effects in the same genetic subtype and role of leucine-rich repeat kinase 2 (LRRK2) G2385R variants in the same sex in PD. METHODS: 613 PD patients were recruited from the Movement Disorders Clinic in Ruijin Hospital. We did not include healthy controls in this study. The data collected includes demographic information, disease history, scores of motor and non-motor symptoms scales, midbrain transcranial sonography and DNA. Binary logistic regression analysis was performed to evaluate the association between clinical features and sex in LRRK2 G2385R carriers and non-carriers, as well as the association between the clinical features and LRRK2 G2385R variants in male and female sex. RESULTS: Sex distribution is similar in LRRK2 G2385R carriers and non-carriers. In male sex, LRRK2 G2385R carriers showed lower risk in cognitive impairment compared with non-carriers (OR = 0.301, p = 0.003, 95%CI 0.135-0.668). In female sex, LRRK2 G2385R carriers showed lower risk in autonomic dysfunction compared with non-carrier (OR = 0.401, p = 0.040, 95%CI 0.167-0.960). In LRRK2 G2385R non-carriers, female sex showed lower risk of impairment in activity of daily living (OR = 0.610, p = 0.021, 95%CI 0.400-0.928), excessive daytime sleepiness (OR = 0.555, p = 0.007, 95%CI 0.361-0.853), substantia nigra hyperechogenicity (OR = 0.448, p = 0.019, 95%CI 0.228-0.878), autonomic dysfunction frequency (OR = 0.626, p = 0.016, 95%CI 0.428-0.917) and higher risk in mood disorders (OR = 1.691, p = 0.022, 95%CI 1.078-2.654) compared with male. In LRRK2 G2385R carriers, female sex showed a lower risk of autonomic dysfunction (OR = 0.294, p = 0.024, 95%CI 0.102-0.849) compared with male. CONCLUSION: In contrast to male PD patients, a more benign disease course was observed in female in both LRRK2 G2385R carriers and non-carriers. However, sex differences were less notable in PD with LRRK2 G2385R variants.
Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Gravedad del Paciente , Caracteres Sexuales , Anciano , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , MutaciónRESUMEN
Development of conceptually novel and practically useful bioconjugation reactions has been an intense pursuit of chemical biology research. Herein, we report an unprecedented bioconjugation reaction that hinges on a chemical trigger-enabled inverse-electron-demand Diels-Alder (IEDDA) cycloaddition of trans-cycloheptene (TCH) with tetrazine. Unlike the conventional strain-promoted bioconjugation reactions that utilize built-in strained alkenes as reactants, the current one features a "trigger-release-conjugate" reaction model, in which a highly strained TCH species is released from a bench-stable bicyclic N-nitrosourea (BNU) derivative upon treatment with an external stimulus. It is noteworthy that the reactivity-stability balance of BNU derivatives could be tuned by manipulating their N-1 substituents. As a proof-of-concept case, this new chemical trigger-enabled IEDDA reaction has been applied to in vitro protein labeling and pretargeted cell imaging. This work opens a new avenue to utilize BNU derivatives as a new class of chemical reporters in bioconjugate chemistry.
Asunto(s)
Compuestos HeterocíclicosRESUMEN
Identification of the gut microbiome compositions associated with disease has become a research focus worldwide. Emerging evidence has revealed the presence of gut microbiota dysbiosis in Parkinson's disease. In this study, we aimed to identify the gut microbiome associated with Parkinson's disease and subsequently to screen and to validate potential diagnostic biomarkers of Parkinson's disease. This case-control study investigated gut microbial genes in faeces from 40 volunteer Chinese patients with Parkinson's disease and their healthy spouses using shotgun metagenomic sequencing. Furthermore, the identified specific gut microbial gene markers were validated with real-time PCR in an independent Chinese cohort of 78 Parkinson's disease patients, 75 control subjects, 40 patients with multiple system atrophy and 25 patients with Alzheimer's disease. We developed the first gut microbial gene catalogue associated with Parkinson's disease. Twenty-five gene markers were identified that distinguished Parkinson's disease patients from healthy control subjects, achieving an area under the receiver operating characteristic curve (AUC) of 0.896 (95% confidence interval: 83.1-96.1%). A highly accurate Parkinson's disease index, which was not influenced by disease severity or Parkinson's disease medications, was created. Testing these gene markers using quantitative PCR distinguished Parkinson's disease patients from healthy controls not only in the 40 couples (AUC = 0.922, 95% confidence interval: 86.4-98.0%), but also in an independent group of 78 patients with Parkinson's disease and 75 healthy control subjects (AUC = 0.905, 95% confidence interval: 86.0-95.1%). This classifier also performed a differential diagnosis power in discriminating these 78 patients with Parkinson's disease from a cohort of 40 patients with multiple system atrophy and 25 patients with Alzheimer's disease based on the panel of 25 biomarkers. Based on our results, the identified Parkinson's disease index based on the gene set from the gut microbiome may be a potential diagnostic biomarker of Parkinson's disease.
Asunto(s)
Microbioma Gastrointestinal/genética , Marcadores Genéticos , Metagenómica/métodos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/microbiología , Anciano , Estudios de Casos y Controles , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Long noncoding RNAs (lncRNAs) have been suggested to play indispensable roles in multiple heart diseases. However, the correlations between lncRNAs and atrial fibrillation (AF) are unclear. In this study, we performed comprehensive lncRNA profiling via high-throughput RNA sequencing analysis using non-AF and AF rabbit models. Based on a series of filtering pipelines and bioinformatics analyses, TCONS-00106987 was selected for further research. TCONS-00106987 levels were increased in the atria during AF. Moreover, the atrial effective refractory period was shortened and the AF inducibility was increased in vivo in response to lentiviral-mediated up-regulation of TCONS-00106987. TCONS-00106987 repression resulted in the opposite effects. Further studies indicated that TCONS-00106987 expression was positively correlated with the expression of the protein-coding gene KCNJ2. Luciferase reporter assays and whole-cell patch-clamp recording confirmed that TCONS-00106987 promoted electrical remodelling via endogenous competition with microRNA-26 (miR-26) to induce transcription of its target gene KCNJ2, thereby increasing inward-rectifier K+ current (IK1 ). In conclusion, our study reveals a pathogenic lncRNA-miRNA regulatory network specific to atrial electrical remodelling that offers potential therapeutic targets for AF.
Asunto(s)
Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Remodelación Atrial/genética , Regulación de la Expresión Génica , MicroARNs/metabolismo , Canales de Potasio de Rectificación Interna/genética , ARN Largo no Codificante/metabolismo , Animales , Secuencia de Bases , Unión Competitiva , Femenino , Perfilación de la Expresión Génica , Masculino , MicroARNs/genética , Canales de Potasio de Rectificación Interna/metabolismo , ARN Largo no Codificante/genética , Conejos , Regulación hacia Arriba/genéticaRESUMEN
BACKGROUND: Progressive supranuclear palsy (PSP) is a rare movement disorder with poor prognosis. This retrospective study aimed to characterize the natural history of PSP and to find predictors of shorter survival and faster decline of activity of daily living. METHOD: All patients recruited fulfilled the movement disorder society (MDS) clinical diagnostic criteria for PSP (MDS-PSP criteria) for probable and possible PSP with median 12 years. Data were obtained including age, sex, date of onset, age at onset (AAO), symptoms reported at first visit and follow-up, date of death and date of institutionalization. Magnetic resonance imaging was collected at the first visit. Endpoints were death and institutionalization. Kaplan-Meier method and Cox proportional hazard model were used to explore factors associated with early death and institutionalization. RESULTS: Fifty-nine patients fulfilling MDS-PSP criteria were enrolled in our study. Nineteen patients (32.2%) had died and 31 patients (52.5%) were institutionalized by the end of the follow-up. Predictors associated with poorer survival were late-onset PSP and decreased M/P area ratio. Predictors associated with earlier institutionalization were older AAO and decreased M/P area ratio. CONCLUSION: Older AAO and decreased M/P area ratio were predictors for earlier dearth and institutionalization in PSP. The neuroimaging biomarker M/P area ratio was a predictor for prognosis in PSP.
Asunto(s)
Progresión de la Enfermedad , Mesencéfalo/patología , Puente/patología , Parálisis Supranuclear Progresiva/patología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Parálisis Supranuclear Progresiva/diagnósticoRESUMEN
A hypoxia-responsive fluorescence probe of amphiphilic PEGylated azobenzene caged tetraphenylethene (TPE) for tumor cell imaging is reported; it possesses excellent solubility in aqueous medium due to the easy formation of micelles by self-assembly. The fluorescence resonance energy transfer (FRET) process ensures that the fluorescence of the azobenene caged AIE fluorogen is quenched efficiently. When cultured with tumor cells, the azo-bond is reduced under hypoxia conditions and the fluorescence of AIE fluorogen recovers dramatically. Besides using UV light, NIR light can also be used as the excited light resource to generate the fluorescence due to the two-photon fluorescence imaging process.
RESUMEN
OBJECTIVE: Lymphocyte activation gene-3 (LAG-3) could mediate pathological α-synuclein transmission in neurodegeneration and may be involved in the pathogenesis of Parkinson's disease (PD). The aim of the present study was to explore soluble LAG-3 (sLAG-3) as a potential diagnostic biomarker for PD. METHODS: Serum sLAG-3 concentrations were measured by a quantitative ELISA for patients with PD, essential tremor (ET) and age- and sex-matched controls. The relationships between sLAG-3 and clinical phenotype were assessed via correlation analysis and logistic regression. RESULTS: Serum sLAG-3 levels in patients with PD were significantly higher than those in ET patients and age- and sex-matched controls. The area under the curve of serum sLAG-3 in differentiating PD from age- and sex-matched controls was 0.82. Serum sLAG-3 was associated with non-motor symptoms and excessive daytime sleep. CONCLUSION: sLAG-3 is a candidate novel biomarker for PD. © 2018 International Parkinson and Movement Disorder Society.
Asunto(s)
Antígenos CD/sangre , Temblor Esencial/sangre , Activación de Linfocitos/fisiología , Enfermedad de Parkinson/sangre , Biomarcadores/sangre , Temblor Esencial/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Fenotipo , Proteína del Gen 3 de Activación de LinfocitosRESUMEN
BACKGROUND: The aim of the study was to investigate the genetic risk factors of essential tremor (ET) in Chinese Population. METHODS: A total of 225 ET patients (25 ET patients also had restless legs syndrome (RLS) and were excluded from final analysis) and 229 controls were recruited. The diagnosis of ET was based on the Consensus Statement of the Movement Disorders Society on tremor. Polymerase chain reaction (PCR) and sequencing were used to detect 12 single nucleotide polymorphisms (SNPs) in seven candidate genes for RLS (HMOX1, HMOX2, VDR, IL17A, IL1B, NOS1 and ADH1B). RESULTS: We found that one SNP was associated with the risk of ET in Chinese population after adjusting for age and gender: rs1143633 of IL1B (odds ratio [OR] =2.57, p = 0.003, recessive model), and the statistical result remained significant after Bonferroni correction. Then, we performed a query in Genotype-tissue Expression (GTEx), Brain eQTL Almanac (Braineac) databases and Blood expression quantitative trait loci (eQTL) browser. The significant association was only found between genotype at rs1143633 and IL1B expression level of putamen and white matter in Braineac database, which was more prominent with homozygous (GG) carriers. CONCLUSIONS: Our study firstly reported the association of IL1B polymorphism with the risk of ET in Chinese population. However, the association might only suggest a marker of IL1B SNP associated with ET instead of the casual variant. Further studies are needed to confirm our finding.
Asunto(s)
Temblor Esencial/genética , Predisposición Genética a la Enfermedad/genética , Interleucina-1beta/genética , Adulto , Anciano , Pueblo Asiatico/genética , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: Structural remodeling is critical to the initiation and maintenance of atrial fibrillation (AF). IGF1, insulin like growth factor 1, has been recognized as contributor to fibrosis. However, the roles and mechanisms of IGF1 in structural remodeling during AF is still unclear. METHODS: We investigated the transcriptional expression profiles of left atria in AF and non-AF rat models by using microarray analysis. And quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the accuracy. After bioinformatics analysis, IGF1 was selected to explore its effects and mechanisms on atrial fibrosis. The fibroblasts were extracted from atria of rats, and randomly divided into negative control group, mIGF1 overexpression group and mIGF1 silencing group. Then 30 healthy male Wistar rats were randomly divided into negative control group (n = 10), pacing group (n = 10), pacing + mIGF1 silencing viruses group (n = 10). Then the intracardiac electrophysiological examination, qRT-PCR, Western Blotting, masson staining were conducted after IGF1 interfering experiments. RESULTS: A total of 956 differentially expressed transcripts were identified, in which 395 transcripts were down-regulated and 561 transcripts were up-regulated. Bioinformatics analysis was conducted to predict the functions and interactions of the aberrantly expressed genes. The inhibition of IGF1 function in AF model could ameliorate the inducibility of AF. The IGF1 plays a fibrotic role by activating the PI3K-Akt pathway to increase the expression of CTGF and AT1R. CONCLUSIONS: IGF1 develops vital function in regulating structural remodeling during AF, which could illustrate the mechanism of AF pathogenesis and supply potential targets for its precise treatment.
Asunto(s)
Fibrilación Atrial/metabolismo , Remodelación Atrial , Perfilación de la Expresión Génica , Atrios Cardíacos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , ARN Mensajero/metabolismo , Animales , Fibrilación Atrial/genética , Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Regulación de la Expresión Génica , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , ARN Mensajero/genética , Ratas Wistar , Transducción de Señal , TranscriptomaRESUMEN
Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR-T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens.
Asunto(s)
Antígenos CD19/inmunología , Antígenos de Neoplasias/inmunología , Inmunoterapia Adoptiva/métodos , Leucemia de Células B/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T , Subgrupos de Linfocitos T/inmunología , Animales , Azidas , Linfocitos B/inmunología , Linfocitos B/patología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Línea Celular Tumoral , Citocinas/metabolismo , Citotoxicidad Inmunológica , Relación Dosis-Respuesta Inmunológica , Femenino , Genes Reporteros , Vectores Genéticos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Activación de Linfocitos , Linfopenia/etiología , Linfopenia/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Fenilalanina/análogos & derivados , Ingeniería de Proteínas/métodos , Receptores de Antígenos de Linfocitos T/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas de Saccharomyces cerevisiae/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Relación Estructura-Actividad , Subgrupos de Linfocitos T/trasplante , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
OBJECTIVE: Gut microbiota changes before the onset of Alzheimer's disease (AD) and the alterations could be detected in the stage of mild cognitive impairment (MCI). The findings might offer diagnostic biomarkers before the onset of dementia. BACKGROUND: AD is the most common cause of dementia, and MCI is the predementia state. Recent studies suggest the alterations in the gut microbial communities associated with AD, whereas the microbiota in MCI before the onset of dementia has not been discovered and characterized in humans. NEW/UPDATED HYPOTHESIS: We hypothesize that the dysbiosis happens in the MCI stage. Patients with AD and MCI have decreased microbial diversity, and changes in gut microbiota could be detected for early detection of AD. In our preliminary study, we identified differences between AD and normal controls in 11 genera from the feces and 11 genera from the blood. No difference in genera between AD and MCI was detected. Using the diagnostic model from fecal samples with all different genera input, 93% (28 in 30) of patients with MCI could be identified correctly. MAJOR CHALLENGES FOR THE HYPOTHESIS: The diagnosis of MCI and AD in the study was based on symptoms and neuroimaging, and AD biomarkers should be included for precise diagnosis in further validating studies. Besides, as the microbiota changes longitudinally, their relationship with the progress of dementia needs to be studied in the prospective studies. LINKAGE TO OTHER MAJOR THEORIES: Escherichia was observed increased at genus level in both fecal and blood samples from AD and MCI. For AD biomarker, postmortem brain tissue from patients with AD showed lipopolysaccharides and gram-negative Escherichia coli fragments colocalize with amyloid plaque. In this way, the amyloid pathogenesis for AD would be triggered during MCI by gut microbiota shifting. Besides, systemic inflammatory reactions caused by compounds secreted by bacteria may impair the blood-brain barrier and promote neuroinflammation and/or neurodegeneration. Furthermore, abnormal metabolites caused by microbial gene functions have an impact on neurodegeneration.
Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Biomarcadores/metabolismo , Disfunción Cognitiva/microbiología , Microbioma Gastrointestinal , Anciano , Sangre/microbiología , Diagnóstico Precoz , Escherichia coli/aislamiento & purificación , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen , Placa Amiloide/patología , Estudios ProspectivosRESUMEN
A nature-inspired bioorthogonal reaction has been developed, hinging on an inverse-electron-demand Diels-Alder reaction of tetrazine with ß-caryophyllene. Readily accessible from the cheap starting material through a scalable synthesis, the newly developed ß-caryophyllene chemical reporter displays appealing reaction kinetics and excellent biocompatibility, which renders it applicable to both in vitro protein labeling and live cell imaging. Moreover, it can be used orthogonally to the strain-promoted alkyne-azide cycloaddition for dual protein labeling. This work not only provides an alternative to the existing bioorthogonal reaction toolbox, but also opens a new avenue to utilize naturally occurring scaffolds as bioorthogonal chemical reporters.
Asunto(s)
Sesquiterpenos/química , Tetrazoles/química , Alquinos , Azidas , Materiales Biocompatibles , Reacción de Cicloadición , Electrones , Cinética , Sesquiterpenos Policíclicos , Coloración y EtiquetadoRESUMEN
BACKGROUND/AIMS: Cardiac autonomic nerve remodeling (ANR) is an important mechanism of atrial fibrillation (AF). GTP cyclohydrolase I, encoded by GCH1, is the rate-limiting enzyme in de novo synthesis of tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide (NO) synthesis. Previous studies reported that increased BH4 and NO content negatively regulated nerve regeneration. This study investigated the effects of GCH1 on ANR via BH4 pathway, regulated by microRNA-206 (miR-206). METHODS AND RESULTS: In canines, atrial tachypacing (A-TP), together with miR-206 overexpression, increased PGP9.5 level and inhibited GCH1 expression by quantitative real-time polymerase chain reaction and western blot analysis. GCH1 was validated to be a direct target of miR-206 by luciferase assays. Meanwhile, miR-206 overexpression by lentiviruses infection into right superior pulmonary vein fat pad decreased GCH1 expression to â¼40% and further reduced BH4 and NO content compared with the control canines. After infection of GCH1 overexpression lentiviruses for two weeks, atrial effective refractory period was increased compared with the control group (105.8 ± 1.537 ms vs 99.17 ± 2.007 ms, P < 0.05). Moreover, GCH1 overexpression attenuated canines' atrial PGP9.5 level to â¼56% of the controls. In myocardial cells, transfection of GCH1 overexpression lentiviruses also decreased PGP9.5 expression to 26% of the control group. In patients, plasma was collected and miR-206 expression was upregulated in AF patients (n = 18) than the controls (n = 12). CONCLUSIONS: Our findings suggested that GCH1 downregulation exacerbated ANR by decreasing atrial BH4 and NO content modulated by miR-206 in A-TP canines. This indicates that GCH1 may prevent the initiation of AF through inhibiting ANR.
Asunto(s)
Fibrilación Atrial/fisiopatología , Fibrilación Atrial/veterinaria , Vías Autónomas/enzimología , Vías Autónomas/fisiopatología , Biopterinas/análogos & derivados , GTP Ciclohidrolasa/metabolismo , Sistema de Conducción Cardíaco/enzimología , Sistema de Conducción Cardíaco/fisiopatología , MicroARNs/metabolismo , Animales , Biopterinas/metabolismo , Western Blotting , Estimulación Cardíaca Artificial , Perros , Óxido Nítrico/metabolismo , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Electrical remodeling has been reported to play a major role in the initiation and maintenance of atrial fibrillation (AF). Long non-coding RNAs (lncRNAs) have been increasingly recognized as contributors to the pathology of heart diseases. However, the roles and mechanisms of lncRNAs in electrical remodeling during AF remain unknown. In this study, the lncRNA expression profiles of right atria were investigated in AF and non-AF rabbit models by using RNA sequencing technique and validated using quantitative real-time polymerase chain reaction (qRT-PCR). A total of 99,843 putative new lncRNAs were identified, in which 1220 differentially expressed transcripts exhibited >2-fold change. Bioinformatics analysis was conducted to predict the functions and interactions of the aberrantly expressed genes. On the basis of a series of filtering pipelines, one lncRNA, TCONS_00075467, was selected to explore its effects and mechanisms on electrical remodeling. The atrial effective refractory period was shortened in vivo and the L-type calcium current and action potential duration were decreased in vitro by silencing of TCONS_00075467 with lentiviruses. Besides, the expression of miRNA-328 was negatively correlated with TCONS_00075467. We further demonstrated that TCONS_00075467 could sponge miRNA-328 in vitro and in vivo to regulate the downstream protein coding gene CACNA1C. In addition, miRNA-328 could partly reverse the effects of TCONS_00075467 on electrical remodeling. In summary, dysregulated lncRNAs may play important roles in modulating electrical remodeling during AF. Our study may facilitate the mechanism studies of lncRNAs in AF pathogenesis and provide potential therapeutic targets for AF.