Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Virol J ; 21(1): 114, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778344

RESUMEN

BACKGROUND: EV71 is one of the important pathogens of Hand-foot-and-mouth disease (HFMD), which causes serious neurological symptoms. Several studies have speculated that there will be interaction between 5'UTR and 3D protein. However, whether 5'UTR interacts with the 3D protein in regulating virus replication has not been clarified. METHODS: Four 5'UTR mutation sites (nt88C/T, nt90-102-3C, nt157G/A and nt574T/A) and two 3D protein mutation sites (S37N and R142K) were mutated or co-mutated using virulent strains as templates. The replication of these mutant viruses and their effect on autophagy were determined. RESULTS: 5'UTR single-point mutant strains, except for EGFP-EV71(nt90-102-3C), triggered replication attenuation. The replication ability of them was weaker than that of the parent strain the virulent strain SDLY107 which is the fatal strain that can cause severe neurological complications. While the replication level of the co-mutant strains showed different characteristics. 5 co-mutant strains with interaction were screened: EGFP-EV71(S37N-nt88C/T), EGFP-EV71(S37N-nt574T/A), EGFP-EV71(R142K-nt574T/A), EGFP-EV71(R142K-nt88C/T), and EGFP-EV71(R142K-nt157G/A). The results showed that the high replicative strains significantly promoted the accumulation of autophagosomes in host cells and hindered the degradation of autolysosomes. The low replicative strains had a low ability to regulate the autophagy of host cells. In addition, the high replicative strains also significantly inhibited the phosphorylation of AKT and mTOR. CONCLUSIONS: EV71 5'UTR interacted with the 3D protein during virus replication. The co-mutation of S37N and nt88C/T, S37N and nt574T/ A, R142K and nt574T/A induced incomplete autophagy of host cells and promoted virus replication by inhibiting the autophagy pathway AKT-mTOR. The co-mutation of R142K and nt88C/T, and R142K and nt157G/A significantly reduced the inhibitory effect of EV71 on the AKT-mTOR pathway and reduced the replication ability of the virus.


Asunto(s)
Regiones no Traducidas 5' , Enterovirus Humano A , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Replicación Viral , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Enterovirus Humano A/patogenicidad , Regiones no Traducidas 5'/genética , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Autofagia , Animales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Transducción de Señal , Chlorocebus aethiops , Mutación , Línea Celular , Células Vero
2.
Environ Toxicol ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155575

RESUMEN

Various studies have demonstrated that ubiquitin D (UBD) is overexpressed in different cancer types and may serve as a potential prognostic factor. However, additional research is necessary to establish the prognostic significance and possible role of UBD in glioma. Transcriptomic expression data from The Cancer Genome Atlas database (TCGA) and Chinese Glioma Genome Atlas (CGGA) were analyzed to identify UBD expression differences in tumor and normal tissues. The relative levels of UBD in glioma and normal tissues were determined using qRT-PCR and WB. Logistic regression analysis was performed to investigate the association between UBD expression and clinicopathological characteristics of glioma patients. To evaluate the diagnostic and prognostic predictive values of UBD, we used Kaplan-Meier survival curves, Cox regression analysis, diagnostic receiver operating characteristic (ROC) curves, and nomogram model. We also conducted wound healing assays, transwell assays, EdU assays, and colony formation assays to verify the UBD function. Gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as gene set enrichment analysis (GSEA), were employed to determine the functions of UBD. Finally, we performed the western blot assays to assess changes in EMT markers as well as p-PI3K, p-AKT, and p-mTOR expressions. Our study revealed a remarkable increase of UBD expression in glioma samples. Cox regression analysis demonstrated that high expression of UBD mRNA was an independent prognostic factor for overall survival (OS) in TCGA. ROC curve analysis showed that UBD expression levels could differentiate glioma from adjacent normal tissues accurately. Additionally, knockdown of UBD reduced the migration, invasion, and proliferation ability of glioma cells while UBD overexpression had the opposite effect. GSEA showed that the expression of UBD involved with various pathways including epithelial-mesenchymal transition (EMT), PI3K-AKT-mTOR signaling, P53 pathway, angiogenesis, inflammatory response, KRAS signaling, hypoxia, as well as TGF-ß signaling. Furthermore, our findings suggest that UBD accelerates the activation of EMT and PI3K/AKT/mTOR pathway.

3.
Cell Commun Signal ; 21(1): 357, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102662

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) induced diabetes-associated cognitive dysfunction (DACD) that seriously affects the self-management of T2DM patients, is currently one of the most severe T2DM-associated complications, but the mechanistic basis remains unclear. Mitochondria are highly dynamic organelles, whose function refers to a broad spectrum of features such as mitochondrial dynamics, mitophagy and so on. Mitochondrial abnormalities have emerged as key determinants for cognitive function, the relationship between DACD and mitochondria is not well understood. METHODS: Here, we explored the underlying mechanism of mitochondrial dysfunction of T2DM mice and HT22 cells treated with high glucose/palmitic acid (HG/Pal) focusing on the mitochondrial fission-mitophagy axis with drug injection, western blotting, Immunofluorescence, and electron microscopy. We further explored the potential role of caveolin-1 (cav-1) in T2DM induced mitochondrial dysfunction and synaptic alteration through viral transduction. RESULTS: As previously reported, T2DM condition significantly prompted hippocampal mitochondrial fission, whereas mitophagy was blocked rather than increasing, which was accompanied by dysfunctional mitochondria and impaired neuronal function. By contrast, Mdivi-1 (mitochondrial division inhibitor) and urolithin A (mitophagy activator) ameliorated mitochondrial and neuronal function and thereafter lead to cognitive improvement by inhibiting excessive mitochondrial fission and giving rise to mitophagy, respectively. We have previously shown that cav-1 can significantly improve DACD by inhibiting ferroptosis. Here, we further demonstrated that cav-1 could not only inhibit mitochondrial fission via the interaction with GSK3ß to modulate Drp1 pathway, but also rescue mitophagy through interacting with AMPK to activate PINK1/Parkin and ULK1-dependent signlings. CONCLUSIONS: Overall, our data for the first time point to a mitochondrial fission-mitophagy axis as a driver of neuronal dysfunction in a phenotype that was exaggerated by T2DM, and the protective role of cav-1 in DACD. Graphic Summary Illustration. In T2DM, excessive mitochondrial fission and impaired mitophagy conspire to an altered mitochondrial morphology and mitochondrial dysfunction, with a consequent neuronal damage, overall suggesting an unbalanced mitochondrial fission-mitophagy axis. Upon cav-1 overexpression, GSK3ß and AMPK are phosphorylated respectively to activate Drp1 and mitophagy-related pathways (PINK1 and ULKI), ultimately inhibits mitochondrial fission and enhances mitophagy. In the meantime, the mitochondrial morphology and neuronal function are rescued, indicating the protective role of cav-1 on mitochondrial fission-mitophagy axis. Video Abstract.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Enfermedades Mitocondriales , Humanos , Ratones , Animales , Mitofagia , Dinámicas Mitocondriales/genética , Diabetes Mellitus Tipo 2/complicaciones , Caveolina 1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuronas/metabolismo , Disfunción Cognitiva/etiología , Ubiquitina-Proteína Ligasas/metabolismo
4.
Altern Ther Health Med ; 29(8): 183-187, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37632947

RESUMEN

Objective: To investigate the application of atorvastatin (AT) combined with ezetimibe (EZ) in elderly patients with hypertension (HY) combined with type 2 diabetes mellitus (T2DM) and the significance analysis of changes in serum bilirubin levels during treatment. Methods: One hundred and twelve elderly patients with HY combined with T2DM admitted to our hospital from September 2019 to March 2022 were selected and divided into a control group (AT) and a combined group (AT + EZ) according to the random number table method, with 56 cases in each group. It revealed that blood glucose, lipid function, inflammatory factors, and serum bilirubin [(total bilirubin, direct bilirubin (DBIL), indirect bilirubin (IBIL))] were also compared in both groups. The combined group was divided into high and low expression groups according to the mean total bilirubin value, and the incidence of adverse reactions was compared between the two groups. Results: Glucose, lipid function, and inflammatory factors were lower in the combined group than in the control group (P < .05). Total bilirubin, DBIL, and IBIL were higher in the combined group than in the control group (P < .05). The total incidence of adverse reactions in the high expression group was significantly lower than that in the low expression group (12.50% vs. 28.57%, P < .05). Conclusion: AT combined with EZ can effectively improve glucose, lipids, inflammation and upregulate serum bilirubin in patients with HY combined with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Humanos , Anciano , Atorvastatina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ezetimiba/uso terapéutico , Bilirrubina , Hipertensión/tratamiento farmacológico , Glucosa
5.
Mol Med ; 28(1): 127, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36303116

RESUMEN

BACKGROUND: Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS: Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS: In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6,877,002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1ß while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS: The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.


Asunto(s)
Ligando de CD40 , Sepsis , Humanos , Ratones , Animales , Ligando de CD40/metabolismo , Células CACO-2 , Ocludina/metabolismo , S-Nitrosoglutatión/metabolismo , ARN Interferente Pequeño , Factor 6 Asociado a Receptor de TNF/metabolismo , Medios de Cultivo Condicionados , Activación Plaquetaria , Sepsis/metabolismo , Neuroglía/metabolismo , Proteínas de Uniones Estrechas/metabolismo
6.
Mol Med ; 28(1): 137, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401163

RESUMEN

BACKGROUND: Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS: Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS: In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6877002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1ß while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS: The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.


Asunto(s)
Ligando de CD40 , Sepsis , Humanos , Ratones , Animales , Ocludina/metabolismo , Ligando de CD40/metabolismo , Células CACO-2 , S-Nitrosoglutatión/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , ARN Interferente Pequeño , Medios de Cultivo Condicionados/metabolismo , Activación Plaquetaria , Sepsis/metabolismo , Neuroglía/metabolismo , Proteínas de Uniones Estrechas/metabolismo
7.
Mar Drugs ; 20(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35877704

RESUMEN

There are resourceful phospholipids in the eggs of the crab, Portunus trituberculatus (Pt-PL). However, their components and bioactivities regarding obesity were unclear. Here, we investigated the composition of Pt-PL and their fatty acids. Moreover, its effects on obesity and gut microbiota were also evaluated in high fat diet (HFD)-fed mice. The results showed that Pt-PL contained 12 kinds of phospholipids, mainly including phosphatidylcholine (PC, 32.28%), phosphatidylserine (PS, 26.51%), phosphatidic acid (PA, 19.61%), phosphatidylethanolamine (PE, 8.81%), and phosphatidylinositol (PI, 7.96%). Polyunsaturated fatty acids (PUFAs) predominated in the fatty acids components of Pt-PL, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Animal experiments demonstrated that Pt-PL significantly alleviated body weight gain, adipose gain, hepatic gain, fasting blood glucose, serum insulin, lipid levels in serum and the liver, and systematic inflammation in HFD-fed mice. Furthermore, Pt-PL regulated gut microbiota, especially in a dramatic reduction in the ratio of Firmicutes to Bacteroidetes at phylum level, as well as significant amelioration in their subordinate categories. Pt-PL reduced fecal lipopolysaccharide and total bile acids, and elevated fecal short chain fatty acid (SCFA) concentrations, particularly acetate and butyrate. These findings suggest that Pt-PL possesses anti-obesity effects and can alter gut microbiota owing to the abundance of PUFAs. Therefore, Pt-PL may be developed as an effective food supplement for anti-obesity and regulation of human gut health.


Asunto(s)
Braquiuros , Microbioma Gastrointestinal , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/etiología , Fosfolípidos/farmacología
8.
Neuromodulation ; 25(3): 433-442, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396073

RESUMEN

BACKGROUND: Transcutaneous auricular vagus nerve stimulation (taVNS) may modulate cardiac autonomic function. However, the response rate of the traditional tonic paradigm is low, and the results remain inconsistent. A recent pilot study presented a novel burst paradigm to activate the cardiac parasympathetic system, which might offer a new approach to treat cardiac autonomic function. The present study reassessed the effect of burst taVNS on modulating heart rate variability and explored the difference between burst and traditional tonic paradigms. MATERIALS AND METHODS: Forty-two young adults were recruited for this study. Each participant underwent three types of taVNS with sham (30 sec of stimulation), tonic (25 Hz, 500 µsec), and burst (five pulses at 500 Hz every 200 msec) paradigms, respectively, with simultaneous electrocardiogram recording. One-way analysis of variance, multivariate analysis of variance, and linear regression were used for analysis. Multiple testing was performed using Bonferroni correction. RESULTS: Both burst and tonic paradigms induced a significant decrease in heart rate, which continued until poststimulation, and increased cardiac parasympathetic activity. Moreover, two parasympathetic system indicators showed significant increase only in burst taVNS. The response rates during burst (35.7%) and tonic (38.1%) stimulations were both higher than that during sham stimulation (11.9%). The response to taVNS showed parameter specificity with few nonresponders to the tonic paradigm responding to the burst paradigm. The overall response rate increased from 38.1% in tonic taVNS to 54.8% in taVNS using both burst and tonic paradigms. For both burst and tonic responders, baseline cardiac parasympathetic activity was found to be significantly negatively correlated with changes during stimulation. CONCLUSION: The burst parameter could be used as an alternative strategy for regulating cardiac parasympathetic function by taVNS, which has the potential to be used as a complementary paradigm to traditional tonic taVNS for promoting clinical treatment efficacy.


Asunto(s)
Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Sistema Nervioso Autónomo , Humanos , Proyectos Piloto , Estimulación Eléctrica Transcutánea del Nervio/métodos , Nervio Vago/fisiología , Estimulación del Nervio Vago/métodos , Adulto Joven
9.
J Perianesth Nurs ; 37(3): 339-343, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35379555

RESUMEN

PURPOSE: To investigate parental acceptance of the use of general anesthesia with mask inhalation (GAMI) in the treatment of ankyloglossia. DESIGN: Parents of children with ankyloglossia received questionnaires to analyze the related factors of their acceptance of GAMI. METHODS: From July 2017 to November 2020, 131 parents of children with ankyloglossia in our hospital were enrolled and received investigation questionnaires. A total of 129 valid questionnaires were returned. The level of acceptance was evaluated using the visual analogue scale (VAS). We described the parental acceptance in a statistical method and performed univariant and multivariate analyses to identify related factors using SPSS 20.0. FINDINGS: A total of 129 (98.5%) parents completed the questionnaires. Only one patient (0.8%) experienced short-term (4 hours) abdominal bloating after surgery with GAMI. The average VAS regarding parental acceptance of the use of GAMI in the treatment was 43.80 mm (± 29.49), with only 17.8% of parents exhibiting a high level of acceptance of the anesthesia technique, while they had a relatively high level of satisfaction after surgery. CONCLUSIONS: Parents had a low level of acceptance of using GAMI in the treatment of ankyloglossia before surgery due to various factors.


Asunto(s)
Anquiloglosia , Anestesia General/métodos , Anestesia por Inhalación , Niño , Humanos , Padres , Encuestas y Cuestionarios
10.
Mar Drugs ; 20(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35049893

RESUMEN

Fucoidans from sea cucumber (SC-FUC) have been proven to alleviate insulin resistance in several species. However, there are few studies that clarify the relationship between their structure and bioactivity. The present study evaluated the influence of molecular weight (Mw), sulfation concentrations (Cs), and sulfation position on improving insulin resistance using SC-FUC. Results showed that fucoidans with lower Mw exerted stronger effects. Having a similar Mw, Acaudina molpadioides fucoidans (Am-FUC) with lower Cs and Holothuria tubulosa fucoidans with higher Cs showed similar activities. However, Isostichopus badionotus fucoidans (higher Cs) activity was superior to that of low-Mw Thelenota ananas fucoidans (Ta-LFUC, lower Cs). Eliminating the effects of Mw and Cs, the bioactivity of Am-FUC with sulfation at meta-fucose exceeded that of Ta-FUC with sulfation at ortho-position. Moreover, the effects of Pearsonothuria graeffei fucoidans with 4-O-sulfation were superior to those of Am-LFUC with 2-O-sulfation. These data indicate that low Mw, 4-O-sulfation, and sulfation at meta-fucose contributed considerably to insulin resistance alleviation by SC-FUC, which could accelerate the development of SC-FUC as a potential food supplement to alleviate insulin resistance.


Asunto(s)
Hipoglucemiantes/farmacología , Polisacáridos/farmacología , Pepinos de Mar , Animales , Organismos Acuáticos , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Fucosa , Hipoglucemiantes/química , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Peso Molecular , Polisacáridos/química , Relación Estructura-Actividad , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA