Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 28(7): 1752-1761, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30039552

RESUMEN

The ideal species for green or vegetated roofs should have high water use after rainfall to maximize stormwater retention but also survive periods with low water availability in dry substrates. Shrubs have great potential for green roofs because they have higher rates of water use, and many species are also drought tolerant. However, not all shrub species will be suitable and there may be a trade-off between water use and drought tolerance. We conducted a glasshouse experiment to determine the possible trade-offs between shrub water use for stormwater management and their response to drought conditions. We selected 20 shrubs from a wide range of climates of origin, represented by heat moisture index (HMI) and mean annual precipitation (MAP). Under well-watered (WW) and water-deficit (WD) conditions, we assessed morphological responses to water availability; evapotranspiration rate (ET) and midday water potential (ΨMD ) were used to evaluate species water use and drought response. In response to WD, all 20 shrubs adjusted their morphology and physiology. However, there were no species that simultaneously achieved high rates of water use (high ET) under WW and high drought tolerance (low ΨMD ) under WD conditions. Although some species which had high water use under WW conditions could avoid drought stress (high ΨMD ). Water use was strongly related to plant biomass, total leaf area, and leaf traits (specific leaf area [SLA] and leaf area ratio [LAR]). Conversely, drought response (ΨMD ) was not related to morphological traits. Species' climate of origin was not related to drought response or water use. Drought-avoiding shrubs (high ΨMD ) could optimize rainfall reduction on green roofs. Water use was related to biomass, leaf area, and leaf traits; thus, these traits could be used to assist the selection of shrubs for stormwater mitigation on green roofs. The natural distribution of species was not related to their water use or drought response, which suggests that shrubs from less arid climates may be suitable for use on green roofs. Selecting species based on traits and not climate of origin could both improve green roof performance and biodiversity outcomes by expanding the current plant palette.


Asunto(s)
Clima , Conservación de los Recursos Naturales/métodos , Sequías , Rasgos de la Historia de Vida , Fenómenos Fisiológicos de las Plantas , Desarrollo Sostenible , Magnoliopsida/fisiología
2.
Plants (Basel) ; 13(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674484

RESUMEN

Trait-based approaches are increasingly used to understand crop yield improvement, although they have not been widely applied to anatomical traits. Little is known about the relationships between root and leaf anatomy and yield in wheat. We selected 20 genotypes that have been widely planted in Luoyang, in the major wheat-producing area of China, to explore these relationships. A field study was performed to measure the yields and yield components of the genotypes. Root and leaf samples were collected at anthesis to measure the anatomical traits relevant to carbon allocation and water transport. Yield was negatively correlated with cross-sectional root cortex area, indicating that reduced root cortical tissue and therefore reduced carbon investment have contributed to yield improvement in this region. Yield was positively correlated with root xylem area, suggesting that a higher water transport capacity has also contributed to increased yields in this study. The area of the leaf veins did not significantly correlate with yield, showing that the high-yield genotypes did not have larger veins, but they may have had a conservative water use strategy, with tight regulation of water loss from the leaves. This study demonstrates that breeding for higher yields in this region has changed wheat's anatomical traits, reducing the roots' cortical tissue and increasing the roots' xylem investment.

3.
Sci Total Environ ; 667: 25-32, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825818

RESUMEN

Green roofs are novel urban ecosystems with shallow substrate depths and low water availability. Hence, it is critical to select green roof plants that can survive water-deficits, particularly in climates with hot and dry summers. Shrubs are perennial plants which can be drought resistant and may be suitable for green roofs. However, studies about survival and health of shrubs are limited. The aim of this study was to determine whether plant climate of origin aridity, drought response and water use strategies could be used to select shrubs which can survive on green roofs that experience water-deficit. We selected 15 shrub species from a range of climates (dry, mesic and wet) and planted them together in 20 replicate green roof modules with 130 mm deep substrate. We monitored substrate water contents, plant minimum water potentials (ψmin), health (visual score), percentage survival and related survival with their turgor loss point (ψtlp) and water use strategies (evapotranspiration rates in a related glasshouse experiment). We also determined whether plants could recover after dry periods by rewatering after the summer. Mean gravimetric soil water content decreased to approximately 5% after summer drought, which resulted in mortality. Overall, survival ranged between 10% and 100% for the 15 species. However, survival was not related to their ψtlp or water use strategies. While shrubs from more arid climates had lower ψmin in response to dry substrates, this did not result in greater survival and health. Following rewatering, only four shrub species resprouted. Hence, as plant drought response, water use strategy and climate of origin were not strongly related to survival, we suggest survival on green roofs is likely to be determined by a combination of physiological traits. Emergency irrigation for shrubs growing on green roofs in hot and dry climates is recommended during summer to keep them alive.


Asunto(s)
Clima Desértico , Sequías , Magnoliopsida/fisiología , Agua/metabolismo , Conservación de los Recursos Naturales , Longevidad , Magnoliopsida/crecimiento & desarrollo , Victoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA