Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Science ; 330(6001): 214-9, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20929772

RESUMEN

Epitaxy is a widely used method to grow high-quality crystals. One of the key challenges in the field of inorganic solids is the development of epitaxial single-crystal nanostructures. We describe their formation from block copolymer self-assembly-directed nanoporous templates on single-crystal Si backfilled with Si or NiSi through a laser-induced transient melt process. Depending on thickness, template removal leaves either an array of nanopillars or porous nanostructures behind. For stoichiometric NiSi deposition, the template pores provide confinement, enabling heteroepitaxial growth. Irradiation through a mask provides access to hierarchically structured materials. These results on etchable and non-etchable materials suggest a general strategy for growing epitaxial single-crystal nanostructured thin films for fundamental studies and a wide variety of applications, including energy conversion and storage.

2.
J Am Chem Soc ; 126(45): 14708-9, 2004 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-15535681

RESUMEN

In the present study, a poly(isoprene-block-dimethylamino ethyl methacrylate) diblock copolymer (PI-b-PDMAEMA) is used to structure-direct a polysilazane pre-ceramic polymer, commercially known as Ceraset. To the polymer was added a 2-fold excess in weight of the silazane oligomer (Ceraset). The resulting composite was cast into films, and after cooperative self-assembly of block copolymer and Ceraset, the structure was permanently set in the hexagonal columnar morphology, as evidenced by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Cross-linking of the silazane oligomer was achieved with a radical initiator at 120 degrees C. Upon heating of the composite to 1500 degrees C under nitrogen, the structure is preserved and a mesoporous ceramic material is obtained, as demonstrated by SAXS and TEM. The pores are open and accessible, as evidenced by nitrogen sorption/desorption measurements indicating a surface area of about 51 m2 g-1 and a pore diameter of 13 nm, consistent with TEM analysis. These results suggest that the use of block copolymer mesophases may provide a simple, easily controlled pathway for the preparation of various high-temperature ceramic mesostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA